class1 PCA&Downsampling&Filtering

本文介绍了点云处理的关键技术,包括PCA(主成分分析)及其核版本,点云降采样方法如Radius Outlier Removal、Voxel Grid Downsampling和Farthest Point Sampling,以及点云噪声过滤。PCA用于数据降维和法向量估计,而点云降采样和过滤旨在减少数据冗余和噪声,提高后续处理效率。
摘要由CSDN通过智能技术生成

1.Introduction

  • 点云表示

    Nx3的矩阵,或者Nx(3+D)的矩阵,D:点的额外特征
    在这里插入图片描述
    在这里插入图片描述

  • 点云获取设备

    • lidar
    • RGB-D
    • CAD Models
    • Depth from Images
  • 点云的应用领域

    • 机器人,自动驾驶
      • 定位:SLAM,闭环检测,点云匹配
      • 感知:目标检测,分类
      • 三维重建
    • 消费设备
      • 人脸识别(Face Id)
      • 手势识别
      • 体态识别
  • 3D信息的其他表示形式

    • Mesh 普遍应用在游戏领域,机器人领域不常用
    • Voxel Grid
    • Octree

在这里插入图片描述

  • 点云表示的优点

    • 数学上表示简单
    • 含有3D信息
  • 点云表示的缺点

    • 稀疏 从激光雷达采集的点云,远处的点很稀疏,近处的点很密集
    • 没有规律 无法像图像那样简单的最近邻搜索
    • 没有纹理信息
    • 无序 很难使用深度学习
    • 旋转不变

2.Principle Component Analysis(PCA)

三维PCA 二维PCA
在这里插入图片描述 在这里插入图片描述
  • 使用PCA找到点云的主方向

  • PCA的应用

    • 降维
    • 曲面法向量估计
    • 关键点检测
    • 特征提取
  • 一些概念

    • 向量点乘,就是一个向量投影到另一个向量上的长度
      在这里插入图片描述

    • 矩阵向量相乘, 线性加和
      在这里插入图片描述

    • 矩阵的SVD分解

      M = U ∗ Σ ∗ V ∗ M=U*\Sigma*V^* M=UΣV,其中, U , V ∗ U,V^* U,V是正交矩阵(旋转矩阵), Σ \Sigma Σ是对角阵,元素是 M M M的特征值的平方根,按照从大到小的顺序排列;

      如下图所示,一个圆 经过一个 M M M处理,就是,先经过一个 V ∗ V^* V,做一个旋转,经过一个 Σ \Sigma Σ,各个维度上的一个缩放,圆变成了椭圆,最后经过一个 U U U,旋转一下,得到最后的结果
      在这里插入图片描述

  • 谱定理Spectral Theorem

    对阵矩阵A的分解 在这里插入图片描述

  • 瑞丽商Rayleigh Quotients在这里插入图片描述
    ​ 根据SVD的那个解释图,瑞丽商表示对称矩阵A可以把x缩放多少倍,最大特征值倍到最小特征值倍

  • PCA

    证明过程也可以看机器学习课程笔记(notes/pdf_notes)

    • Input: x i ∈ R n , i = 1 , 2 , 3 , . . . , m x_i\in R^n,i=1,2,3,...,m xiRn,i=1,2,3,...,m

    • output: 主成分向量 z 1 , z 2 , . . . , z k ∈ R n , k < = n z_1,z_2,...,z_k\in R^n,k<=n z1,z2,...,zkRn,k<=n

    • Q:哪些是最主要的成分?

      A:把数据投影到这个方向上,方差最大的就是最主要的成分

    • Q:怎样获取第二、第三重要的成分?

      A:将第一主成分去掉,再找一次主成分,得到第二主成分,以此类推

    • 下面会有详细解释

  • Principle Component Analysis - Proof

    • 将数据做归一化处理,因为只关心数据的方向,和中心点无关
      在这里插入图片描述

    • PCA就是找到一个方向 z ∈ R n , ∣ ∣ z ∣ ∣ 2 = 1 z\in R^n,||z||_2=1 zRn,z2=1,投影之后方差最大, 所以先投影,得到 α i \alpha_i αi(标量)
      在这里插入图片描述

    • 投影之后计算方差(归一化后,均值为0),写成矩阵形式
      在这里插入图片描述

    • 最大化这个方差
      在这里插入图片描述

    • 调用瑞丽商公式
      在这里插入图片描述

    • 调用谱定理
      在这里插入图片描述

    • 应用到PCA
      在这里插入图片描述

  • PCA - Summary

    • 给定数据 x i ∈ R n , i = 1 , 2 , 3 , . . . , m x_i\in R^n,i=1,2,3,...,m xiRn,i=1,2,3,...,mPCA的流程
  1. 归一化 在这里插入图片描述
  2. 计算协方差矩阵然后对其进行SVD分解 在这里插入图片描述
  3. 主方向是 U r U_r Ur的列向量,前n列,就是前n个主方向(Eigenvector of 𝑋 = Eigenvector of 𝐻)
  • PCA实际上是一个换基底的过程

  • PCA - 降维

    给定数据 x i ∈ R n , i = 1 , 2 , 3 , . . . , m x_i\in R^n,i=1,2,3,...,m xiRn,i=1,2,3,...,m,使用PCA提取出来 l l l个主成分 z 1 , z 2 , . . . , z l , z j ∈ R n {z_1,z_2,...,z_l},z_j\in R^n z1,z2,...,zl,zjR

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值