一阶条件为什么没写呢?因为Boyd那么书上写的很详细,但是二阶的书上没证。。。当然二阶的证明是基于一阶的结论的~
先从最简单的情况
f
:
R
f: R
f:R->
R
R
R证明,高维直接类比就行了。
首先将凸函数的定义以及一阶的结论列下来:(不管有没有用,先列下来?,对于你证明会有益处的,这是中科大的一个老师当时看我证明的吐槽?)
定义:
f
(
θ
x
+
(
1
−
θ
)
y
)
≤
θ
f
(
x
)
+
(
1
−
θ
)
f
(
y
)
f(\theta x+(1-\theta)y)\leq \theta f(x)+(1-\theta)f(y)
f(θx+(1−θ)y)≤θf(x)+(1−θ)f(y)
(
0
≤
θ
≤
1
a
n
d
d
o
m
f
i
s
c
o
n
v
e
x
)
(0\leq \theta \leq 1\ \ and\ \ domf\ is\ convex)
(0≤θ≤1 and domf is convex);
一阶条件:
f
(
x
)
≥
f
(
y
)
+
f
′
(
y
)
(
x
−
y
)
f(x)\geq f(y)+f'(y)(x-y)
f(x)≥f(y)+f′(y)(x−y)
充分性:
f
(
y
)
≤
f
(
x
)
−
f
′
(
y
)
(
x
−
y
)
f
(
θ
x
+
(
1
−
θ
)
y
)
≤
θ
f
(
x
)
+
(
1
−
θ
)
(
f
(
x
)
−
f
′
(
y
)
(
x
−
y
)
)
f
(
θ
x
+
(
1
−
θ
)
y
)
−
f
(
x
)
≤
−
(
1
−
θ
)
f
′
(
y
)
(
x
−
y
)
f(y)\leq f(x)-f'(y)(x-y)\\ f(\theta x+(1-\theta)y)\leq \theta f(x)+(1-\theta)(f(x)-f'(y)(x-y))\\ f(\theta x+(1-\theta)y)-f(x)\leq -(1-\theta)f'(y)(x-y)
f(y)≤f(x)−f′(y)(x−y)f(θx+(1−θ)y)≤θf(x)+(1−θ)(f(x)−f′(y)(x−y))f(θx+(1−θ)y)−f(x)≤−(1−θ)f′(y)(x−y)
when
x
x
x->
y
y
y:
f
(
θ
x
+
(
1
−
θ
)
y
)
−
f
(
x
)
=
f
′
(
x
)
(
1
−
θ
)
(
y
−
x
)
f
′
(
x
)
(
1
−
θ
)
(
x
−
y
)
≥
(
1
−
θ
)
f
′
(
y
)
(
x
−
y
)
f
′
(
x
)
−
f
′
(
y
)
x
−
y
≥
0
f(\theta x+(1-\theta)y)-f(x)=f'(x)(1-\theta)(y-x)\\ f'(x)(1-\theta )(x-y)\geq (1-\theta)f'(y)(x-y)\\ \frac{f'(x)-f'(y)}{x-y}\geq 0
f(θx+(1−θ)y)−f(x)=f′(x)(1−θ)(y−x)f′(x)(1−θ)(x−y)≥(1−θ)f′(y)(x−y)x−yf′(x)−f′(y)≥0
得证: f ′ ′ ( x ) ≥ 0 f''(x)\geq 0 f′′(x)≥0
必要性:
由
f
′
′
(
x
)
≥
0
f''(x)\geq 0
f′′(x)≥0可得:
(
x
−
y
)
[
f
′
(
x
)
−
f
′
(
y
)
]
≥
0
(x-y)[f'(x)-f'(y)]\geq 0
(x−y)[f′(x)−f′(y)]≥0
(
x
−
y
)
f
′
(
x
)
≥
f
′
(
y
)
(
x
−
y
)
(x-y)f'(x)\geq f'(y)(x-y)
(x−y)f′(x)≥f′(y)(x−y)
设
g
(
x
)
=
(
x
−
y
)
f
′
(
x
)
−
[
f
(
x
)
−
f
(
y
)
]
g
′
(
x
)
=
(
x
−
y
)
f
′
′
(
x
)
=
0
g(x)=(x-y)f'(x)-[f(x)-f(y)]\\ g'(x)=(x-y)f''(x)=0
g(x)=(x−y)f′(x)−[f(x)−f(y)]g′(x)=(x−y)f′′(x)=0
所以当
x
=
y
x=y
x=y时,
g
(
x
)
g(x)
g(x)取得极小值,即
g
(
x
)
m
i
n
=
0
g(x)_{min}=0
g(x)min=0
也就是说,
(
x
−
y
)
f
′
(
x
)
≥
f
(
x
)
−
f
(
y
)
≥
f
′
(
y
)
(
x
−
y
)
(x-y)f'(x)\geq f(x)-f(y)\geq f'(y)(x-y)
(x−y)f′(x)≥f(x)−f(y)≥f′(y)(x−y)
得证一阶条件,
f
(
x
)
≥
f
(
y
)
+
f
′
(
y
)
(
x
−
y
)
f(x)\geq f(y)+f'(y)(x-y)
f(x)≥f(y)+f′(y)(x−y),从而必要性得证。
所以,凸函数的二阶条件就是 f ′ ′ ( x ) ≥ 0 f''(x)\geq 0 f′′(x)≥0(高维: ∇ 2 f ( x ) ⪰ 0 \nabla^{2}f(x)\succeq0 ∇2f(x)⪰0)