NVIDIA RTX A6000深度学习训练基准

NVIDIA RTX A6000深度学习训练基准

2021年1月4日

在本文中,我们对RTX A6000的PyTorch和TensorFlow培训性能进行了基准测试。我们将其与Tesla A100,V100,RTX 2080 Ti,RTX 3090,RTX 3080,RTX 2080 Ti,Titan RTX,RTX 6000,RTX 8000,RTX 6000等进行了比较。

 

RTX A6000亮点

  • 记忆体:48 GB GDDR6
  • PyTorch convnet “FP32”的表现: 1.5倍比RTX 2080钛快
  • PyTorch NLP“ FP32”性能:比RTX 2080 Ti快3.0倍
  • TensorFlow convnet“ FP32”性能:比RTX 2080 Ti快1.8倍
  • 零售价: $ 4,650

PyTorch“ 32位”卷积训练速度

  • 图表显示,例如,A100 SXM4比RTX A6000快92%
  • 请注意,A100和A6000使用TensorFloat-32,而其他GPU使用FP32
  • 每个GPU的训练速度是通过平均SSD,ResNet-50和Mask RCNN的标准化训练吞吐量(图像/秒)来计算的。

PyTorch“ 32位”语言模型的训练速度

  • 图表显示,例如,A100 SXM4比RTX A6000快58%
  • 请注意,A100和A6000使用TensorFloat-32,而其他GPU使用FP32
  • 每个GPU的训练速度是通过在Transformer-XL基础,Transformer-XL大,Tacotron 2和BERT基础SQuAD上对标准化的训练吞吐量进行平均来计算的。

TensorFlow“ 32位” convnet训练速度

  • 图表显示,例如,A100 PCIe比RTX A6000快61%
  • 请注意,A100和A6000使用TensorFloat-32,而其他GPU使用FP32
  • 每个GPU的训练速度是通过平均其在ResNet-152,ResNet-50,Inception v3,Inception v4,AlexNet和VGG-16上的标准化训练吞吐量(图像/秒)来计算的。

PyTorch基准测试软件堆栈

注意:我们正在使用所有GPU上使用相同软件版本的新基准测试。
 

RTX A6000,Tesla A100s,RTX 3090和RTX 3080已使用
NGC的PyTorch 20.10 docker映像和Ubuntu 18.04,PyTorch 1.7.0a0 + 7036e91,CUDA 11.1.0,cuDNN 8.0.4,NVIDIA驱动程序460.27.04和NVIDIA进行了基准测试优化的模型实现。

使用NGC的PyTorch 20.01 docker映像,Ubuntu 18.04,PyTorch 1.4.0a0 + a5b4d78,CUDA 10.2.89,cuDNN 7.6.5,NVIDIA驱动程序440.33和NVIDIA优化的模型实现,对安培前GPU进行了基准测试。

TensorFlow基准测试软件堆栈

注意:我们正在使用所有GPU上使用相同软件版本的新基准测试。

RTX A6000使用NGC的TensorFlow 20.10 docker映像进行了基准测试,该映像使用Ubuntu 18.04,TensorFlow 1.15.4,CUDA 11.1.0,cuDNN 8.0.4,NVIDIA驱动程序455.32和Google的官方模型实现。

特斯拉A100,RTX 3090和RTX 3080已使用Ubuntu 18.04,TensorFlow 1.15.4,CUDA 11.1.0,cuDNN 8.0.4,NVIDIA驱动程序455.45.01和Google的官方模型实现进行了基准测试。

使用TensorFlow 1.15.3,CUDA 10.0,cuDNN 7.6.5,NVIDIA驱动程序440.33和Google的官方模型实现对安培前GPU进行了基准测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur.AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值