年底了,技术群组织了一场算法岗技术&面试讨论会,邀请了一些同学分享他们的面试经历,讨论会会定期召开,如果你想加入我们的讨论群或者希望要更详细的资料,文末加入。
喜欢本文记得收藏、关注、点赞
文章目录
美团
岗位:机器学习/数据挖掘
- 手撕,给出中序遍历和后序遍历,构建树
- 介绍树模型,(GBDT,XGBoost等)
- 项目为什么用XGBoost
- 介绍LR
- XGB和LR的区别,各适用哪些场景。
- 项目中Lovain算法是个什么算法。
- 项目中使用的评价指标
- 准确率有什么缺点和问题
- AUC
- 优化算法
- 激活函数
- 特征提取方法?
- CNN和MLP区别,CNN的优势,为什么不使用MLP。
- RNN和LSTM,优缺点
- 反问
微众银行
岗位:数据挖掘
选择:
假设检验
SQL视图
数字规律
欧氏距离、余弦距离
高斯分布
PCA&LDA
贝叶斯定理
SVM
泊松分布
降低过拟合&欠拟合
简答:
K-means算法步骤
案例分析
中信卡中心
岗位:数据挖掘
测评(9.17)
常规测评,比较简单。
笔试(9.21)
选择题+3道编程(1道sql,两道Python)
技术一面(10.22)
项目、竞赛深挖
sql数据处理
attention的原理
Hive用没用过
l1、12的作用及原理
AUC是什么,达到多少算不错?
反问部门业务
面试官说,已通过初面,留意邮件
技术二面(10.22)
介绍风控项目
linux如何修改文本文件?
linux如何查看调度?
sql如何分区?
正则表达式如何匹配字符串?
xgboost的原理?
面试官说,已通过二面,留意邮件
三面hr面(10.22)
自我介绍
竞赛中自己承担的角色?
项目中遇到的困难,以及如何解决?
家庭背景?
职业规划?
选公司看重哪些点?
有哪些offer?
最后面试官说,银行流程比较慢, 给我打个预防针,说通过后,11月中下旬才会有后续安排。
资质审核(11.11)
双十一收到邮件,说进入资质审核阶段,填了一些信息并上传各类证书等。
offer(12.30)
参加了薪资沟通会,薪资没达到期望,已拒。
顺丰
岗位:数据挖掘
面试 深挖简历,什么都问。
ML,主要是比较几个模型,Kmeans & DBSCAN分别应用在哪些场景比较好? LR & SVM的区别?分别应用在那些场景?
DL,简单介绍一下RNN,它和LSTM,ARIMA的区别?
是否了解大数据?说说你了解的hadoop和spark。(说我这部分有待加强,现在做数据挖掘必须要会)
sql,4中join,窗口函数
有没有做过数据分析报告?我说美赛,简要说明了一下。
我反问我应该加强什么:他回答一个是大数据相关要多学习,一个要了解不同模型的应用场景。
招联金融
岗位:数据挖掘岗
岗位是数据开发,一道编程,几十道选择。难度不大,但涉及面挺广。
一面
笔试完,隔天约面,效率很高。
项目介绍,自己的分工
特征选择方法
数据挖掘中对于缺失值的处理方案
说一下Python(pandas)中常用的数据处理算子。
Spark的原理,分布式是怎么搭建的。
Sql中union和union all的区别
数据行转列怎么操作
xgboost和gbdt的区别
xgboost常调的参数有哪些
svm原理
说一下你在研会组织了什么活动?
讲一下你支教的经历。
反问
二面
一面结束,当天晚上约二面,再一次佩服招联的效率。
自我介绍
项目竞赛深挖
说一下你风控项目中用到的模型?
数据挖掘中缺失值和异常值是怎么处理的?
特征降维怎么做?
Sql用过哪些操作,举个例子
Sql如何提高运行效率?
过拟合的处理方法?
项目中遇到困难如何解决?
领导交给你一项不可能完成而且又很重要的问题,怎么办?
反问
联想
岗位:数据挖掘
时间过去有点久了,纯凭回忆,可能有些遗漏
一面
机器学习基础知识
Bagging & Boosting
常用的聚类算法
Kmeans和DBSCAN的原理和区别
逻辑回归的原理
怎么处理离散数据
支持向量机原理
SVM怎么处理非线性
常用的回归模型
Attention原理
RNN和LSTM的区别
什么是梯度爆炸/梯度消失,什么情况下会出现
梯度渐进的原理
手撕算法
判断是否是回文
找出最长回文子串
二面
过简历,找一个之前项目的PPT给他细讲
手撕算法 自定义排序
要求忽略大小写从a到z排,非字符的保持在原位,相同字母保留原有顺序
顺丰-
岗位:大数据挖掘与分析面经
一面:
1.深挖实习,指标体系如何建立,各项指标的权重如何确定
2.逻辑回归算法的原理
3.谈谈对ABtest的认识
4.sql排序窗口函数的区别
二面:
1.深挖实习,预测为什么选用随机森林算法,如何调参
2.论文项目,简单介绍
3.了解哪些机器学习算法
4.反问
hr面
1.实习中遇到的困难,如何解决
2.过往经历中,你认为最困难的问题,你是如何解决的
3.你是北方人,为什么会选择深圳,以及还投了深圳其他企业吗
4.为何选择顺丰科技大数据挖掘与分析岗位
5.在其他人眼中,你是一个怎样的人
蓝月亮IT-
岗位:数据挖掘
年前投递了蓝月亮春招提前批,没有数据分析岗,但是有数据挖掘开发岗,就试着投递了,没想到投了很快就约了测评和一面,年前1面+2面,年后立马终面,这个流程走得很快,中途还有个过年,效率很高了
一面:群面
虽然形式是群面,但是是HR统一面试几个人,每个人先轮流自我介绍,然后抽题演讲,我抽到的问题是,如何看待“敬业”,当然没有专业问题,都是观点题,有的还是“你性格的优缺点”,“如何看待双减”之类的。之后HR会对每个人问一点简单的问题,大概就是这么看待工作地点,怎么看待蓝月亮之类的。
二面:专业面试
这部分耗时比较长,因为我是数据挖掘岗,在他们那的定位是技术岗,当时也是HR和专业面试官在场,先是面试官问问题,再是HR问问题。
回忆的问题如下:
开头问问过往的经历,讲一下过往的一个项目,没有深挖
接下来是专业问题:
线性回归和逻辑回归有什么区别
逻辑回归的形式是什么,损失函数是什么
线性回归的损失函数是什么
逻辑回归的激活函数是什么,除了sigmoid还知道哪些
特征工程是什么,为什么要做特征工程,怎么选取特征
为什么有的时候需要将连续变量离散化
怎么将连续的变量离散化
决策树的特征选择原理有哪些
过拟合和欠拟合怎么理解,分别怎么解决
SVM的原理
SVM如何解决线性不可分的问题
既然你提到了惩罚系数,那么讲讲SVM使用的核函数有哪些
xgboost和GBDT的区别
提到了正则项,那么L1和L2有什么区别
xgboost泰勒展开是一阶还是二阶
多线程和多进程
用过哪些编程语言
反问:介绍了团队的主要岗位,一些日常工作,业务范围
三面:主管面试
这一轮不太问专业问题,主要从职业发展,个人成长,个人意向去问
比如:作为技术岗,怎么提高自己的业务能力,你会通过什么方式进行技术的学习
其实问的问题也不水哈,毕竟我不是纯大数据出身,主要的实习都是数据分析相关,真正实战建模的机会不多,比较感动的是没有考手撕代码,除了SQL以外的手撕代码我都非常头大,感觉他们IT需求蛮多的,算法、NLP、CV都需要,可以试试~
快手
岗位:数据挖掘
一面
1.自我介绍
2.项目介绍
3.项目细节
4.随机森林、决策树、XGBoost的区别和联系
5.离散特征怎么处理?(没听懂面试官想问啥 )
6.针对项目提问,连续特征怎么处理?
算法:最大子序和 动态规划+贪心算法 做题有点慢
面试官建议:虽然有些东西工作不会用到,但是面试还是会问,题还是应该多刷一刷
不说了,刷题背八股去了,小姐姐很温柔,希望能再给个机会
二面
1.自我介绍
2.项目介绍(What、Why、How、难点、思考)
3.项目怎么分工的
4.一两句话简述LR、随机森林、XGBoost优缺点
5.精准率、召回率、F1-score、AUC指标的含义和使用场景
6.二维矩阵查找【二分法】
不记得还有什么了。。。
三面
1.自我介绍
2.项目介绍
3.线性回归,模型的假设,损失函数,求解
4.BP神经网络。反向传播传的是什么?
5.各种分桶方法的优缺点
6.特征组合,归一化
7.深度学习与传统机器学习相比最大的不同?
技术交流
独学而无优则孤陋而寡闻,技术要学会交流、分享,不建议闭门造车。
建立了技术交流与面试交流群,面试真题、答案获取,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:交流
方式②、添加微信号:dkl88194,备注:交流
资料
我们打造了《数据分析实战案例宝典》,特点:从0到1轻松学习,方法论及原理、代码、案例应有尽有,所有案例都是按照这样的节奏进行表述。