trtexec命令用法

trtexec 是 TensorRT 提供的一个命令行工具,用于将深度学习模型转换为 TensorRT 引擎,并对其进行性能测试和推理。它支持多种模型格式(如 ONNX、Caffe 等),并允许用户配置各种参数以优化模型性能。以下是 trtexec 的主要功能和命令选项介绍:

工具安装

trtexec 是 NVIDIA TensorRT 提供的一个命令行工具,用于测试和运行 TensorRT 引擎。它可以用于快速评估模型的性能、生成 TensorRT 引擎文件等。

安装TensorRT

基本功能

模型转换:

  1. trtexec 可以将 ONNX、Caffe 等格式的模型转换为 TensorRT 引擎文件(.engine),以便在 NVIDIA GPU 上进行高效推理。

性能测试:

  1. 通过运行多次推理,trtexec 可以测量并报告模型的推理性能,包括延迟和吞吐量。

动态形状支持:

  1. 支持动态输入形状,可以在模型转换和推理时指定最小、最佳和最大输入形状。

精度设置:

  1. 支持多种计算精度,包括 FP32、FP16、INT8 和 FP8,以在性能和精度之间进行权衡。 常用命令选项

常用命令选项

模型选项

  • –onnx=:指定要加载的 ONNX 模型文件。
  • –saveEngine=:将转换后的 TensorRT 引擎文件保存到指定路径。
  • –loadEngine=:加载已保存的 TensorRT 引擎文件。

构建选项

  • –minShapes=spec、–optShapes=spec、–maxShapes=spec:指定动态输入形状的最小、最佳和最大值。
  • –fp16:启用 FP16 精度。
  • –int8:启用 INT8 精度,并且需要提供校准文件。
  • –calib=:指定 INT8 校准缓存文件。
  • –builderOptimizationLevel:设置构建优化级别,值越高,构建时间越长但可能性能更好。

推理选项

  • –shapes=spec:设置动态形状输入的实际形状。
  • –iterations=N:指定推理迭代次数。
  • –duration=N:指定推理测试的持续时间(秒)。
  • –warmUp=N:指定推理前的预热时间(毫秒)。

性能报告

  • –verbose:启用详细日志。
  • –avgRuns=N:报告多个连续迭代的平均性能。
  • –percentile=P1,P2,P3,…:报告指定百分位数的性能。

系统选项

  • –device=N:选择 CUDA 设备。
  • –useDLACore=N:选择 DLA 核心。

示例命令

1转换 ONNX 模型为 TensorRT 引擎:

trtexec 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

现实、狠残酷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值