主流卡尔曼滤波推导——KF、EKF、IKF、UKF、ESKF

本文详细介绍了卡尔曼滤波的各类变体,包括普通卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)、迭代扩展卡尔曼滤波(IEKF)、无迹卡尔曼滤波(UKF)和误差状态卡尔曼滤波(ESKF),阐述了高斯分布、贝叶斯滤波原理,并解析了各种滤波器的核心计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、高斯分布

1.1 高斯概率密度函数

一维情况下, 高斯概率密度函数表示为:
在这里插入图片描述

其中 μ \mu μ为均值, σ 2 \sigma^2 σ2为方差。
多维情况下, 高斯概率密度函数表示为
在这里插入图片描述
其中 μ \mu μ为均值, 方差为 Σ \Sigma Σ

1.2 联合高斯概率密度函数

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
这就是有名的贝叶斯推论

1.3 高斯随机变量的线性变换

在这里插入图片描述

二、滤波器基本原理

符号说明:
x ˇ \check{\boldsymbol{x}} xˇ是预测(先验) x ^ \hat{\boldsymbol{x}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值