奇异值分解方法求解最小二乘问题的原理

一、奇异值分解(SVD)原理

1.1 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:
A x = λ x Ax=λx Ax=λx
其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n λ_1≤λ_2≤...≤λ_n λ1λ2...λn,以及这n个特征值所对应的特征向量 w 1 , w 2 , . . . , w n w_1,w_2,...,w_n w1,w2,...,wn,如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:
A = W Σ W − 1 A=WΣW^−1 A=WΣW1

其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。一般我们会把W的这n个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 ||w_i||_2=1 wi2=1, 或者说 w i T w i = 1 w^T_iw_i=1 wiTwi=1,此时W的n个特征向量为标准正交基,满足 W T W = I W^TW=I WTW=I,即 W T = W − 1 W^T=W^−1 WT=W1, 也就是说W为酉矩阵。

这样我们的特征分解表达式可以写成
A = W Σ W T A=WΣW^T A=WΣWT

注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

1.2 SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
A = U Σ V T A=UΣV^T A=UΣVT

其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足 U T U = I , V T V = I U^TU=I,V^TV=I UTU=I,VTV=I。下图可以很形象的看出上面SVD的定义:
在这里插入图片描述

1.3 求出SVD分解后的U,Σ,V矩阵

如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 A T A A^TA ATA。既然ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A T A ) v i = λ i v i (A^TA)v_i=λ_iv_i (ATA)vi=λivi
这样我们就可以得到矩阵 A T A A^TA ATA的n个特征值和对应的n个特征向量v了。将 A T A A^TA ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 A A T AA^T AAT。既然 A A T AA^T AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A A T ) u i = λ i u i (AA^T)u_i=λ_iu_i (AAT)ui=λiui

这样我们就可以得到矩阵 A A T AA^T AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

我们注意到:
A = U Σ V T ⇒ A V = U Σ V T V ⇒ A V = U Σ ⇒ A v i = σ i u i ⇒ σ i = A v i / u i A=UΣV^T⇒AV=UΣV^TV⇒AV=UΣ⇒Av_i=σ_iu_i⇒σ_i=Av_i/u_i A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui
这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

上面还有一个问题没有讲,就是我们说ATA的特征向量组成的就是我们SVD中的V矩阵,而AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。
A = U Σ V T ⇒ A T = V Σ T U T ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T A=U \Sigma V^{T} \Rightarrow A^{T}=V \Sigma^{T} U^{T} \Rightarrow A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T} A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT

上式证明使用了: U T U = I , Σ T Σ = Σ 2 U^TU=I,Σ^TΣ=Σ^2 UTU=I,ΣTΣ=Σ2
可以看出 A T A A^TA ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 A A T AA^T AAT的特征向量组成的就是我们SVD中的U矩阵。
进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ i = λ i \sigma_{i}=\sqrt{\lambda_{i}} σi=λi
这样也就是说,我们可以不用 σ i = A v i / u i = \sigma_{i}=A v_{i} / u_{i}= σi=Avi/ui=来计算奇异值,也可以通过求出 A T A A^TA ATA的特征值取平方根来求奇异值。

1.4 SVD计算举例

这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

A = ( 0 1 1 1 1 0 ) \mathbf{A}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right) A=011110
我们首先求出 A T A A^TA ATA A A T AA^T AAT
A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 ) A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 ) \begin{array}{c} \mathbf{A}^{\mathbf{T}} \mathbf{A}=\left(\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right) \\ \mathbf{A} \mathbf{A}^{\mathbf{T}}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right) \end{array} ATA=(011110)011110=(2112)AAT=011110(011110)=110121011
进而求出 A T A A^TA ATA的特征值和特征向量:
λ 1 = 3 ; v 1 = ( 1 / 2 1 / 2 ) ; λ 2 = 1 ; v 2 = ( − 1 / 2 1 / 2 ) \lambda_{1}=3 ; v_{1}=\left(\begin{array}{c} 1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right) ; \lambda_{2}=1 ; v_{2}=\left(\begin{array}{c} -1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right) λ1=3;v1=(1/2 1/2 );λ2=1;v2=(1/2 1/2 )
接着求 A A T AA^T AAT的特征值和特征向量:
λ 1 = 3 ; u 1 = ( 1 / 6 2 / 6 1 / 6 ) ; λ 2 = 1 ; u 2 = ( 1 / 2 0 − 1 / 2 ) ; λ 3 = 0 ; u 3 = ( 1 / 3 − 1 / 3 1 / 3 ) \lambda_{1}=3 ; u_{1}=\left(\begin{array}{c} 1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6} \end{array}\right) ; \lambda_{2}=1 ; u_{2}=\left(\begin{array}{c} 1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2} \end{array}\right) ; \lambda_{3}=0 ; u_{3}=\left(\begin{array}{c} 1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3} \end{array}\right) λ1=3;u1=1/6 2/6 1/6 ;λ2=1;u2=1/2 01/2 ;λ3=0;u3=1/3 1/3 1/3
利用 A v i = σ i u i , i = 1 , 2 Av_i=σ_iu_i,i=1,2 Avi=σiui,i=1,2求奇异值:
( 0 1 1 1 1 0 ) ( 1 / 2 1 / 2 ) = σ 1 ( 1 / 6 2 / 6 1 / 6 ) ⇒ σ 1 = 3 ( 0 1 1 1 1 0 ) ( − 1 / 2 1 / 2 ) = σ 2 ( 1 / 2 0 − 1 / 2 ) ⇒ σ 2 = 1 \begin{array}{l} \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{c} 1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right)=\sigma_{1}\left(\begin{array}{c} 1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6} \end{array}\right) \Rightarrow \sigma_{1}=\sqrt{3} \\ \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{c} -1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right)=\sigma_{2}\left(\begin{array}{c} 1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2} \end{array}\right) \Rightarrow \sigma_{2}=1 \end{array} 011110(1/2 1/2 )=σ11/6 2/6 1/6 σ1=3 011110(1/2 1/2 )=σ21/2 01/2 σ2=1
当然,我们也可以用 σ i = λ i \sigma_{i}=\sqrt{\lambda_{i}} σi=λi 直接求出奇异值为 3 \sqrt{3} 3 和1.
最终得到A的奇异值分解为:
A = U Σ V T = ( 1 / 6 1 / 2 1 / 3 2 / 6 0 − 1 / 3 1 / 6 − 1 / 2 1 / 3 ) ( 3 0 0 1 0 0 ) ( 1 / 2 1 / 2 − 1 / 2 1 / 2 ) A=U \Sigma V^{T}=\left(\begin{array}{ccc} 1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\ 2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\ 1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \end{array}\right)\left(\begin{array}{cc} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right)\left(\begin{array}{cc} 1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2} \end{array}\right) A=UΣVT=1/6 2/6 1/6 1/2 01/2 1/3 1/3 1/3 3 00010(1/2 1/2 1/2 1/2 )

1.5 SVD的一些性质

上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:
A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T} \approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{T} Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT
其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 U m × k , Σ k × k , V k × n T U_{m×k},Σ_{k×k},V^T_{k×n} Um×k,Σk×k,Vk×nT
来表示。
在这里插入图片描述
如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。

二、线性最小二乘问题

2.1 最小二乘问题复习

min ⁡ ∥ A x − b ∥ 2 2 A ∈ R m ∗ n x ∈ R n b ∈ R m \begin{array}{l} \min \|A x-b\|_{2}^{2} \\ A \in R^{m^{* n}} \quad x \in R^{n} \quad b \in R^{m} \end{array} minAxb22ARmnxRnbRm
m个方程求解n个未知数,有三种情况:

  • m=n且A为非奇异,则有唯一解, x = A − 1 b x=A^{-1}b x=A1b
  • m>n,约束的个数大于未知数的个数,称为超定问题(overdetermined)
  • m<n,负定/欠定问题(underdetermined)

通常我们遇到的都是超定问题,此时Ax=b的解是不存在的,从而转向解最小二乘问题:
J ( x ) = m i n ∥ A x − b ∥ 2 2 J(x)=min \|A x-b\|_{2}^{2} J(x)=minAxb22
J(x)为凸函数,我们令一阶导数为0,得到: A T A x − A T b = 0 A^{T} A x-A^{T} b=0 ATAxATb=0,称之为正规方程一般解:
x = ( A T A ) − 1 A T b x=\left(A^{T} A\right)^{-1} A^{T} b x=(ATA)1ATb

2.2 奇异值分解与线性最小二乘问题

因为矩阵的逆很难求解,因此用SVD分解A矩阵

参考链接

https://www.cnblogs.com/pinard/p/6251584.html

打赏

创作不易,如果对您有帮助,就打赏一下吧O(∩_∩)O

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值