卷积块注意模块

目录

Abstract:

Introduction

Related Work(Attention mechanism)

Convolutional Block Attention Module

通道注意力模块

空间注意力模块

模块安排

 实验

消融研究

Channel attention

Spatial attention

Channel and Spatial attention

使用Grad-CAM进行网络可视化


Abstract:

  • 给定一个中间的特征图,模块沿着通道和空间两个维度推断注意力映射
  • CBAM是轻量级的和基本的模块,它可以整合进任意的CNN结构与模型一起进行端到端的训练;并且训练所需要的花费较少
  • 代码是公开的

Introduction

  • 为了提高CNNs的性能,近年来的研究主要考察了网络的三个重要因素:深度、宽度和基于分组的方式。从Xception和ResNeXt来看,基数不仅节省了参数的总数,而且比深度和宽度这两个因素具有更强的表示能力。
  • 注意力不仅能告诉你该把注意力放在哪里,还能提高兴趣的代表性。
  • 该论文的目标是通过使用注意力机制来增加代表性:专注于重要的特性,抑制不必要的特性
  • 由于卷积运算通过混合跨信道和空间信息来提取信息特征,我们采用我们的模块来强调信道和空间轴上有意义的特征。为了实现这一点,我们依次应用通道和空间注意力模块。这样,每个分支都可以在通道和空间轴上分别学习“什么”和“哪里”。
  • 由于我们精心设计了轻量级的模块,所以在大多数情况下,参数和计算的开销可以忽略不计。

Related Work(Attention mechanism)

众所周知,注意力在人类感知中起着重要的作用。人类视觉系统的一个重要特性是一个人不会试图一次处理整个场景。

最近,有几次尝试将注意力处理与提高CNNs在大规模分类任务中的性能相结合:

Wang et al.提出“Residual Attention Network”。使用编码器和解码器风格的注意力模块。通过改进特征映射,该网络不仅性能良好,而且对噪声输入具有鲁棒性。

Hu et al.介绍了一个利用通道之间的相关性的紧凑模块,在Squeeze-and-Excitation模块中使用全局平均池化特征来计算通道级的注意力。整个方法是与本论文相近的,本文作者建议使用最大池化特征,并且认为他们没有注意到空间注意力,这在“看哪里”扮演者重要的角色。

Convolutional Block Attention Module

给出一个中间特征图 F\in \mathbb{R}^{C\times H\times W} ,

CBAM依次推导出一维通道注意图M_c \in \mathbb{R}^{C \times 1 \times 1};2D空间注意力图 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值