目标检测2——卷积注意力模块

卷集注意力模块(CBAM)

在这里插入图片描述

为后续YOLOv4网络加入卷集注意力模块,在这里记录一下卷集注意力模块的理解。

1.卷集注意力模块整体结构

卷积注意力模块是一种结合了通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module) 两个维度的注意力机制模块。通过这两个模块分别对输入特征图在 通道向和空间向进行自适应地特征选择和增强,突出主要特征,抑制无关特征,从而使网络更加关注需要检测目标的内容信息和位置 信息,以提高网络的检测精度。

在使用 CBAM 时先输入一个特征图𝐹,其通道数为𝐶,且各个 通道特征图的宽和高均分别为𝑊和𝐻。然后 CBAM 使用通道注意 力模块将输入的特征图 F 转换为一维的通道注意力图 A T A_T AT,再将输入的特征图𝐹与 A T A_T AT进行像素级相乘,得到通道向的显著特征图 F T F_T FT, 计算公式如(1.1)。而后使用空间注意力模块将 F T F_T FT转换为二 维的空间注意力图 A K A_K AK,最后将 F T F_T FT A K A_K AK进行像素级相乘得到输出的 特征图 F R F_R FR,计算公式如(1.2)。

F T = A T ( F ) ⊗ F (1.1) F_T=A_T(F)⊗F \tag{1.1} FT=AT(F)F(1.1) F R = A K ( F T ) ⊗ F T (1.2) F_R=A_K(F_T)⊗F_T \tag{1.2} FR=AK(FT)FT(1.2)
其中⊗代表像素级相乘,以上过程可表示为下图。
在这里插入图片描述

2.通道注意力模块

在通道注意力模块中,特征图的每一个通道都被认为是一个特征检测器。通道注意力模块关注的是特征在通道间的关系,主要提取输入图像中有意义的内容信息,压缩输入特征图的空间向信息。在CBAM中通道注意力模块同时采用全局平均池化和全局最大池化,其中平均池化反应了全局信息,最大池化反应了特征图中的突出特点,两种不同池化的同时使用可以提取更加丰富的高层次特征。

在通道注意力模块中对输入的特征图F分别进行最大池化和平均池化,生成两个不同的空间信息描述特征图 F m a x 和 F a v g F_{max}和F_{avg} FmaxFavg,再将这两个特征图送入一个共享网络之中计算得到通道注意力图 A T A_T AT。这里的共享网络由含有一个隐藏层的多层感知机(Multi­layer Perceptron,MLP)构成。最后通过点像素逐位相加将共享网络输出的两个向量融合为 A T A_T AT,计算方法如公式(2.1)所示。
A T = σ ( A v g P o o l ( F ) ) + M L P ( M a x P o o l ( F ) ) ) = σ ( W 1 ( W 0 ( F a v g ) ) + W 1 ( W 0 ( F m a x ) ) ) (2.1) \begin{aligned} A_T&= \sigma(AvgPool(F))+MLP(MaxPool(F)))\\ & =\sigma(W_1(W_0(F_{avg}))+W_1(W_0(F_{max}))) \end{aligned}\tag{2.1} AT=σ(AvgPool(F))+MLP(MaxPool(F)))=σ(W1(W0(Favg))+W1(W0(Fmax)))(2.1)
式中σ表示sigmoid函数,MLP为多层感知机,AvgPool与MaxPool分别表示平均池化与最大池化, W 1 W_1 W1 W 0 W_0 W0为多层感知机模型中的参数。以上具体计算过程如下图所示。
在这里插入图片描述

3.空间注意力模块

空间注意力模块关注的是特征在空间上的关系,主要提取输入图像中目标的位置信息,与通道注意力模块相互补充,选择出特征图中目标的内容和位置信息。在CBAM中空间注意力模块在通道注意力模块之后,将通道向的显著特征图F_T在通道的维度上分别进行最大池化和平均池化,得到两个二维特征图 F m a x ′ F^{'}_{max} Fmax F a v g ′ F^{'}_{avg} Favg,再将得到的两个特征图进行拼接,生成特征描述器,从而突出目标区域,计算方法如公式(3.1)
A K = σ ( C o n v 7 × 7 ( [ M a x P o o l ( F T ) ; A v g P o o l ( F C ) ] ) ) = σ ( C o n v 7 × 7 ( [ F m a x ′ ⋅ F a v g ′ ] ) ) (3.1) \begin{aligned} A_K&= \sigma(Conv_{7\times7}([MaxPool(F_T);AvgPool(F_C)]))\\ & =\sigma(Conv_{7\times7}([F^{'}_{max}\cdot F^{'}_{avg}])) \end{aligned}\tag{3.1} AK=σ(Conv7×7([MaxPool(FT);AvgPool(FC)]))=σ(Conv7×7([FmaxFavg]))(3.1)
最后,使用一个7×7卷积生成二维空间注意力图 A K A_K AK。上述操作步骤可由下图所示。
在这里插入图片描述
下面是实现卷积注意力模块的代码,基于Pytorch来写的,后续可以直接植入到YOLOv4网络中使用

class BasicConv(nn.Module):
    def __init__(
        self,
        in_planes,
        out_planes,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        relu=True,
        bn=True,
        bias=False,
    ):
        super(BasicConv, self).__init__()
        self.out_planes = out_planes
        self.conv = nn.Conv2d(
            in_planes,
            out_planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        self.bn = (
            nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True)
            if bn
            else None
        )
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)


class ChannelGate(nn.Module):
    def __init__(
        self, gate_channels, reduction_ratio=16, pool_types=["avg", "max"]
    ):
        super(ChannelGate, self).__init__()
        self.gate_channels = gate_channels
        self.mlp = nn.Sequential(
            Flatten(),
            nn.Linear(gate_channels, gate_channels // reduction_ratio),
            nn.ReLU(),
            nn.Linear(gate_channels // reduction_ratio, gate_channels),
        )
        self.pool_types = pool_types

    def forward(self, x):
        channel_att_sum = None
        for pool_type in self.pool_types:
            if pool_type == "avg":
                avg_pool = F.avg_pool2d(
                    x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))
                )
                channel_att_raw = self.mlp(avg_pool)
            elif pool_type == "max":
                max_pool = F.max_pool2d(
                    x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))
                )
                channel_att_raw = self.mlp(max_pool)
            elif pool_type == "lp":
                lp_pool = F.lp_pool2d(
                    x,
                    2,
                    (x.size(2), x.size(3)),
                    stride=(x.size(2), x.size * (3)),
                )
                channel_att_raw = self.mlp(lp_pool)
            elif pool_type == "lse":
                # LSE pool
                lse_pool = logsumexp_2d(x)
                channel_att_raw = self.mlp(lse_pool)

            if channel_att_sum is None:
                channel_att_sum = channel_att_raw
            else:
                channel_att_sum = channel_att_sum + channel_att_raw
        scale = (
            F.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
        )
        return x * scale


def logsumexp_2d(tensor):
    tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
    s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
    outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
    return outputs


class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat(
            (torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)),
            dim=1,
        )


class SpatialGate(nn.Module):
    def __init__(self):
        super(SpatialGate, self).__init__()
        kernel_size = 7
        self.compress = ChannelPool()
        self.spatial = BasicConv(
            2,
            1,
            kernel_size,
            stride=1,
            padding=(kernel_size - 1) // 2,
            relu=False,
        )

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.spatial(x_compress)
        scale = F.sigmoid(x_out)
        return x * scale


class CBAM(nn.Module):
    def __init__(
        self,
        gate_channels,
        reduction_ratio=16,
        pool_types=["avg", "max"],
        no_spatial=False,
    ):
        super(CBAM, self).__init__()
        self.ChannelGate = ChannelGate(
            gate_channels, reduction_ratio, pool_types
        )
        self.no_spatial = no_spatial
        if not no_spatial:
            self.SpatialGate = SpatialGate()

    def forward(self, x):
        x_out = self.ChannelGate(x)
        if not self.no_spatial:
            x_out = self.SpatialGate(x_out)
        return x_out
  • 4
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
回答: 常见的注意力机制模块结构图中,其中一种是Convolutional Block Attention Module (CBAM)。CBAM是一种结合了空间和通道的注意力机制模块。它包括通道注意力机制和空间注意力机制两个模块。首先,输入的图像会通过通道注意力机制模块,然后再经过空间注意力机制模块,最终形成通道权重并与输入的图像相乘,得到最终的图像特征图。在常见的注意力机制模块中,除了CBAM还有其他常见的模块,如SE和ECA。但是SE和ECA模块的具体结构图不在本次引用内容中提及。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [注意力机制 cnn keras_CBAM:卷积注意力机制模块](https://blog.csdn.net/weixin_39985279/article/details/110235266)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [SE、CBAM、ECA注意力机制(网络结构详解+详细注释代码+核心思想讲解+注意力机制优化神经网络方法)——...](https://blog.csdn.net/qq_43215597/article/details/130634953)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风迈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值