2002-2003,匈牙利数学奥林匹克第二轮

已知非负实数 x 、 y 、 z x、y、z xyz 满足 x 2 + y 2 + z 2 + x + 2 y + 3 z = 13 4 . x^2+y^2+z^2+x+2y+3z=\frac{13}4. x2+y2+z2+x+2y+3z=413.
(1)求 x + y + z x+y+z x+y+z 的最大值;
(2)证明: x + y + z ≥ 22 − 3 2 x+y+z\geq\frac{\sqrt{22}-3}2 x+y+z222 3

(i) \qquad 由已知等式得 ( x + 1 2 ) 2 + ( y + 1 ) 2 + ( z + 3 2 ) 2 = 27 4 . (x+\frac12)^2+(y+1)^2+(z+\frac32)^2=\frac{27}4. (x+21)2+(y+1)2+(z+23)2=427.

[ ( x + 1 2 ) + ( y + 1 ) + ( z + 3 2 ) ] 2 ≤ 3 [ ( x + 1 2 ) 2 + ( y + 1 ) 2 + ( z + 3 2 ) 2 ] = 81 4 . [(x+\frac12)+(y+1)+(z+\frac32)]^2\leq3[(x+\frac12)^2+(y+1)^2+(z+\frac32)^2]=\frac{81}4. [(x+21)+(y+1)+(z+23)]23[(x+21)2+(y+1)2+(z+23)2]=481.

x + y + z ≤ 3 2 , x+y+z\leq\frac32, x+y+z23,当且仅当 x = 1 , y = 1 2 , z = 0 x=1,y=\frac12,z=0 x=1,y=21,z=0 时,上式等号成立.



(ii)证明 \qquad 因为

( x + y + z ) 2 ≥ x 2 + y 2 + z 2 (x+y+z)^2\geq x^2+y^2+z^2 (x+y+z)2x2+y2+z2

3 ( x + y + z ) ≥ x + 2 y + 3 z 3(x+y+z)\geq x+2y+3z 3(x+y+z)x+2y+3z

所以,
( x + y + z ) 2 + 3 ( x + y + z ) ≥ 13 4 . (x+y+z)^2+3(x+y+z)\geq\frac{13}4. (x+y+z)2+3(x+y+z)413.

解得 x + y + z ≥ 22 − 3 2 x+y+z\geq\frac{\sqrt{22}-3}2 x+y+z222 3.

当且仅当 x = 0 , y = 0 , z = 22 − 3 2 x=0,y=0,z=\frac{\sqrt{22}-3}2 x=0,y=0,z=222 3 时,上式等号成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值