李宏毅深度学习笔记2-2Backpropagation

1、背景

梯度下降
对于参数θ (weight and bias)先选择一个初始的 θ 0 \theta^0 θ0,计算 θ 0 \theta^0 θ0的损失函数(Loss Function)设一个参数的偏微分计算完这个向量(vector)偏微分,然后就可以去更新θ。
而对于百万级别的参数(millions of parameters):反向传播(Backpropagation)是一个比较有效率的算法,让你计算梯度(Gradient) 的向量(Vector)时,可以有效率的计算出来
链式法则
在这里插入图片描述

2、反向传播

1、损失函数(Loss function)是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的,用L表示。
2、代价函数(Cost function)是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。
3、总体损失函数(Total loss function)是定义在整个训练集上面的,也就是所有样本的误差的总和。也就是平时我们反向传播需要最小化的值。
在这里插入图片描述
对于L(θ)就是所有的损失之和,所以如果要算L(θ)的偏微分,只要算每个样本的损失函数的偏微分,再结果加起来就可以。
取出一个Neuron进行分析:把计算梯度分成两个部分
计算 ∂ z ∂ w \frac{\partial z}{\partial w} wz(Forward pass的部分)
计算 ∂ C ∂ z \frac{\partial C}{\partial z} zC (Backward pass的部分 )
在这里插入图片描述
Forward pass
根据求微分原理,forward pass的运算规律就是: ∂ z ∂ w 1 = x 1 ∂ z ∂ w 2 = x 2 \frac{\partial z}{\partial w_1} = x_1 \frac{\partial z}{\partial w_2} = x_2 w1z=x1w2z=x2 这里计算得到的 x 1 x 1 x_1x1 x1x1 x 2 x_2 x2恰好就是输入的 x 1 x_1 x1 x 2 x_2 x2
Backward Pass
Backward pass的部分比较复杂,因为我们的C是最后一层: 那怎么计算
∂ C ∂ z \frac{\partial C}{\partial z} zC
在这里插入图片描述
计算所有激活函数的偏微分,激活函数有很多,这里使用Sigmoid函数为例这里使用链式法则(Chain Rule)的case1,计算过程如下:
∂ C ∂ z = ∂ a ∂ z ∂ C ∂ a ⇒ σ ′ ( z ) ∂ C ∂ a = ∂ z ′ ∂ a ∂ C ∂ z ′ + ∂ z ′ ′ ∂ a ∂ C ∂ z ′ ′ \frac{\partial C}{\partial z} = \frac{\partial a}{\partial z}\frac{\partial C}{\partial a} \Rightarrow {\sigma}'(z)\frac{\partial C}{\partial a} = \frac{\partial z'}{\partial a}\frac{\partial C}{\partial z'} +\frac{\partial z''}{\partial a}\frac{\partial C}{\partial z''} zC=zaaCσ(z)aC=azzC+azzC
在这里插入图片描述
假设问号可以算出来,那么最终的式子结果:
在这里插入图片描述
这就是反向传播,通过后面的导数求前面的导数,其中σ′(z)其实是常数,因为它在向前传播的时候就已经确定了
case 1 : Output layer
假设 ∂ C ∂ z ′ \frac{\partial C}{\partial z'} zC ∂ C ∂ z ′ ′ \frac{\partial C}{\partial z''} zC是最后一层的隐藏层 也就是就是y1与y2是输出值,那么直接计算就能得出结果。
在这里插入图片描述
case 2 : Not Output Layer
如果不是最后一层,计算就需要继续往后一直通过链式法则算下去
我们可以做一个反向的神经网络,把损失函数与正向的输出的导数当作输入,不断计算导数的前向传播即可。实际上进行backward pass时候和向前传播的计算量差不多。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值