强化学习系列之Policy Gradient

1、前言

这篇博客主要是参考了李宏毅的强化学习课程,感觉讲的挺不错的,有兴趣的同学可以去看一下。

通俗点来说,强化学习是通过将惩戒来学习正确行为的机制。基本结构可以看下面的一个图:


也就是说 Agent 需要通过强化学习的方法来学习到正确的 Action。上图中,Environment一般是写好的规则,Reward 也是事先定好的,我们需要优化的是 Agent 所执行的 Action。

Policy Gradient 是强化学习的一种,它与基于价值的方式不同,是直接进行策略(Policy)的学习,即将策略看成是状态和行为的带参数的策略函数。简单来说,Policy Gradient 方法是直接输出下一步的动作。

2、策略目标函数

Policy π \pi π 决定了 Agent 的行为。所谓的 Policy 就是给定一个外界输入,然后它会输出 Agent 现在要执行的一个行为。Policy π \pi π 可以被描述为一个包含参数 θ \theta θ 的函数:
π θ = P ( a ∣ s , θ ) \pi_{\theta} = P(a|s, \theta) πθ=P(as,θ) 从公式可以看出,策略函数 π θ \pi_{\theta} πθ 是一个概率密度函数,它是在给定的状态和一定的参数设置下 ,采取任何可能行为的概率。简单来说就是输入状态 s s s,输出下一个动作。 其中, s s s 一般是给定的,所以,我们的目标是求最优参数 θ \theta θ ,来使得下一步的动作 a a a 最优。

3、例子

加入现在有个游戏如下图所示,Env表示环境 Environment,Actor即为 Agent,Trajectory代表一个回合:

每一个Trajectory 我们可以计算它发生的一个几率:

p θ ( τ ) = p ( s 1 ) p θ ( a 1 ∣ s 1 ) p θ ( s 2 ∣ s 1 , a 1 ) p ( a 2 ∣ s 2 ) p ( s 3 ∣ s 2 , a 2 ) ⋯ = p ( s 1 ) ∏ t = 1 T p θ ( a t ∣ s t ) p ( s t + 1 , a t ) \begin{aligned} p_{\theta}(\tau) &= p(s_1)p_{\theta}(a_1|s_1)p_{\theta}(s_2|s_1,a_1)p(a_2|s_2)p(s_3|s_2, a_2)\cdots \\\\ &= p(s_1)\prod_{t=1}^T p_{\theta}(a_t|s_t)p(s_{t+1}, a_t) \end{aligned} pθ(τ)=p(s1)pθ(a1s1)pθ(s2s1,a1)p(a2s2)p(s3s2,a2)=p(s1)t=1Tpθ(atst)p(st+1,at)
其中, p ( s 1 ) p(s_1) p(s1) 是初始的环境,环境之间通常是有联系的。其中 p ( s t + 1 , a t ) p(s_{t+1}, a_t) p(st+1,at) 是游戏已经写好了的,就像输入一个动作,它的下一个画面自己就会出来。所以我们能改变的是 p θ ( a t ∣ s t ) p_{\theta}(a_t|s_t) pθ(atst)

现在我们再来看 Reward,Reward Function 的意思是在当前环境下,相应的行为会得到多少分数:

每一个 Trajectory 我们得到的总的奖励为:

R ( τ ) = ∑ t = 1 T r t \begin{aligned} R(\tau) = \sum_{t=1}^Tr_t \end{aligned} R(τ)=t=1Trt
我们现在需要做的就是调整 θ \theta θ 的值,使得 R ( τ ) R(\tau) R(τ) 的值越大越好。因为 Actor 采取的动作是具有随机性的,所以我们最终的奖励也是具有随机性的,所以我们应该算一个期望值,也就是穷举所有的 Trajectory:
R θ ‾ = ∑ τ R ( τ ) ∗ p θ ( τ ) = E τ ∼ p θ ( τ ) [ R ( τ ) ] \begin{aligned} \overline{R_\theta} = \sum_{\tau}R({\tau})*p_{\theta}(\tau) = E_{{\tau}\sim {p_{\theta}}(\tau)}[R(\tau)] \end{aligned} Rθ=τR(τ)pθ(τ)=Eτpθ(τ)[R(τ)]
然后我们来求梯度,下式中的上标只是单纯的上标,不是次方:

∇ R θ ‾ = ∑ τ R ( τ ) ∇ p θ ( τ ) = ∑ τ R ( τ ) p θ ( τ ) ∇ log ⁡ p θ ( τ ) = E τ ∼ p θ ( τ ) [ R ( τ ) ∇ log ⁡ p θ ( τ ) ] ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ p θ ( τ n ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ n ) ∇ log ⁡ p θ ( a t n ∣ s t n ) \begin{aligned} \nabla \overline{R_\theta} &= \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) \\\\ &= \sum_{\tau} R(\tau)p_{\theta}(\tau)\nabla \log p_\theta(\tau) \\\\ &= E_{{\tau} \sim {p_{\theta}(\tau)}} [R(\tau) \nabla \log p_\theta (\tau)] \\\\ &\approx \frac{1}{N} \sum_{n=1}^{N} R({\tau} ^ n) \nabla \log p_{\theta}({\tau}^n) \\\\ &= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R({\tau}^n)\nabla \log p_{\theta}(a_t^n|s_t^n) \end{aligned} Rθ=τR(τ)pθ(τ)=τR(τ)pθ(τ)logpθ(τ)=Eτpθ(τ)[R(τ)logpθ(τ)]N1n=1NR(τn)logpθ(τn)=N1n=1Nt=1TnR(τn)logpθ(atnstn)
剩下就正常更新参数 θ \theta θ 就行了,只是一般我们都是最小化损失函数,这里是最大化 Reward,更新时改变一下正负号。另外,它的奖励是很多轮结束后的奖励(也就是游戏结束后,根据游戏的输赢给奖励),所以跟新梯度与普通有些不同。

这里说一个小提示:游戏的奖励都为正的话,那么应该考虑加一个 baseline ,也就是用 reward-baseline 来当做最终的reward。

另外,理想的状况下,我们更希望每一个不同的 Action,我们都给一个 reward,这样才能真正反应每一个 action 到底是不是好的。所以嘞,我们可以将奖励 R ( τ n ) R(\tau ^n) R(τn) 用下式代替,也就是只考虑当前步与后面步骤的联系:
∑ t ′ = t T n r t ′ n \begin{aligned} \sum_{t \prime = t}^{T_n}r_{t \prime}^n \end{aligned} t=tTnrtn
这样我们给奖励时就不考虑前面的 action 了,进一步地,为了减少当前步与距离远的后续步骤的联系,可以继续变换成:
∑ t ′ = t T n r t ′ n γ t ′ − t \begin{aligned} \sum_{t \prime = t}^{T_n}r_{t \prime}^n \gamma ^{t \prime - t} \end{aligned} t=tTnrtnγtt
其中 γ &lt; 1 \gamma &lt; 1 γ<1,这样距离当前 action 远的后续 action 的影响就会很小。通常我们将 R ( τ n ) − b R(\tau ^ n)-b R(τn)b 合起来称作 Advantage Function,通常用 A θ ( s t , a t ) A^\theta(s_t, a_t) Aθ(st,at) 表示。

4、后续

最后,我们可以看出来,每一次更新,我们都需要 sample 很多 data,而且,更新后,这些 data 就没有用了。为了解决这个问题,就有了 Policy Gradient 的一个变形:Proximal Policy Optimization (PPO)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面我将为您介绍一个简单的强化学习 policy gradient 的实例。 假设我们有一个小车在一条直线上移动,小车只能向左或向右移动一格,并且每次移动会消耗一定的能量。我们的目标是让小车尽可能快地到达终点,同时尽量少地消耗能量。 为了解决这个问题,我们可以使用 policy gradient 方法。具体来说,我们可以定义一个策略网络,它的输入是当前小车所处的位置,输出是一个概率分布,表示小车向左或向右移动的概率。我们使用该策略网络来生成小车的移动轨迹,并计算每个轨迹的总能量消耗和到达终点所需的步数。然后,使用 policy gradient 方法来更新策略网络的参数,使得总能量消耗最小化。 下面是具体的步骤: 1. 定义策略网络。假设我们使用一个简单的全连接神经网络,它的输入是当前小车所处的位置,输出是一个两维向量,表示小车向左或向右移动的概率。 2. 定义损失函数。我们使用交叉熵作为损失函数,即将策略网络的输出与实际移动方向的 one-hot 向量进行比较,并计算交叉熵损失。 3. 生成轨迹。使用当前的策略网络生成小车的移动轨迹,并计算每个轨迹的总能量消耗和到达终点所需的步数。 4. 计算梯度。使用 policy gradient 方法计算梯度。具体来说,对于每个轨迹,我们计算其总能量消耗和到达终点所需的步数与所有轨迹中的平均值的差异,并将该差异乘以该轨迹的梯度。最终,将所有轨迹的梯度进行平均,得到策略网络的梯度。 5. 更新策略网络参数。使用梯度下降或其他优化算法来更新策略网络的参数,使得总能量消耗最小化。 6. 重复步骤 3-5,直到策略网络收敛。 以上就是一个简单的强化学习 policy gradient 的实例。当然,在实际应用中,还需要考虑许多细节和优化,如使用基线来减小方差、使用函数逼近器来处理高维状态空间等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值