def detection_inference(model, frames):
results = []
for frame in frames:
result = inference_detector(model, frame)
results.append(result)
return results
输入和输出是什么?
这个函数的输入是一个目标检测模型和一系列帧的列表。
model
是目标检测模型,用于执行目标检测推理。frames
是一个包含多个帧的列表,每个帧可以是图像或视频的一帧。
函数的输出是一个结果列表,其中包含了每个输入帧的目标检测结果。列表的每个元素都是一个帧的检测结果,通常以某种数据结构(如边界框坐标、标签等)表示。
具体地说,函数通过循环遍历输入的每个帧,并使用给定的目标检测模型对每个帧进行推理。每次迭代中,函数调用 inference_detector
函数来执行目标检测推理,并将结果添加到结果列表 results
中。最后,函数返回结果列表。
所以,这个函数的输入是目标检测模型和一系列帧的列表,输出是一个包含每个帧的目标检测结果的列表。
def detection_inference(model, frames):
model = model.cuda()
results = []
for frame in frames:
result = inference_detector(model, frame)
results.append(result)
return results
-
model = model.cuda()
:这行代码将目标检测模型(model
)移动到 GPU 上进行计算。cuda()
方法是 PyTorch 中用于将模型或张量(Tensor)移动到 GPU 上的方法。通过调用cuda()
,模型将在 GPU 上执行后续的计算操作。 -
results = []
:这行代码创建了一个空列表results
,用于存储每个帧的检测结果。 -
for frame in frames:
:这行代码使用for
循环遍历帧列表frames
中的每个帧,并将当前帧赋值给变量frame
。 -
result = inference_detector(model, frame)
:这行代码调用了目标检测推理函数inference_detector
,传入目标检测模型model
和当前帧frame
,执行目标检测推理,并将结果赋值给变量result
。 -
results.append(result)
:这行代码将当前帧的检测结果result
添加到结果列表results
中。 -
return results
:这行代码返回包含每个帧的检测结果的结果列表results
。
这段代码的目的和之前解释的一样,只是在第 2 行中多了一句 model = model.cuda()
,这是为了将目标检测模型移动到 GPU 上进行计算,以提高计算性能。