如何在Hi3559A上运行自己的YOLOv3模型(五)

将自己的网络放到HI3559A上运行

 

前言:在上一篇中我们已经可以根据仿真的结果看到自己转化后的模型的效果是什么样的,此次我们来将这个结果在海思处理器上复现出来

step1.

在ubuntu上进入SDK目录下的mpp/sample/svp/big-little,并将自己的wk文件与bgr图像放入nnie/data中

注意可以在板子上运行的wk文件只能是指令仿真的wk文件(inst),功能性仿真的文件(func)不能被板子载入

step2.

进入nnie/sample文件夹,打开并编辑sample_nnie.c 文件,找到下面这两部分,按照自己的需求进行更改

    pstSoftWareParam->u32OriImHeight = pstNnieParam->astSegData[0].astSrc[0].unShape.stWhc.u32Height;
    pstSoftWareParam->u32OriImWidth = pstNnieParam->astSegData[0].astSrc[0].unShape.stWhc.u32Width;
    pstSoftWareParam->u32BboxNumEachGrid = 3;
    pstSoftWareParam->u32ClassNum = 5;       //类的数目
    pstSoftWareParam->au32GridNumHeight[0] = 19;  //图片大小/32 (例:608/32)
    pstSoftWareParam->au32GridNumHeight[1] = 38;  //图片大小/16
    pstSoftWareParam->au32GridNumHeight[2] = 76;  //图片大小/8
    pstSoftWareParam->au32GridNumWidth[0] = 19;
    pstSoftWareParam->au32GridNumWidth[1] = 38;
    pstSoftWareParam->au32GridNumWidth[2] = 76;
    pstSoftWareParam->u32NmsThresh = (HI_U32)(0.3f*SAMPLE_SVP_NNIE_QUANT_BASE);
    pstSoftWareParam->u32ConfThresh = (HI_U32)(0.5f*SAMPLE_SVP_NNIE_QUANT_BASE);
    pstSoftWareParam->u32MaxRoiNum = 15;     //每个图片最多由多少个目标
    /*以下为模型的anchor,具体计算方法请自行查询,不更改也可*/
    pstSoftWareParam->af32Bias[0][0] = 116; 
    pstSoftWareParam->af32Bias[0][1] = 90;
    pstSoftWareParam->af32Bias[0][2] = 156;
    pstSoftWareParam->af32Bias[0][3] = 198;
    pstSoftWareParam->af32Bias[0][4] = 373;
    pstSoftWareParam->af32Bias[0][5] = 326;
    pstSoftWareParam->af32Bias[1][0] = 30;
    pstSoftWareParam->af32Bias[1][1] = 61;
    pstSoftWareParam->af32Bias[1][2] = 62;
    pstSoftWareParam->af32Bias[1][3] = 45;
    pstSoftWareParam->af32Bias[1][4] = 59;
    pstSoftWareParam->af32Bias[1][5] = 119;
    pstSoftWareParam->af32Bias[2][0] = 10;
    pstSoftWareParam->af32Bias[2][1] = 13;
    pstSoftWareParam->af32Bias[2][2] = 16;
    pstSoftWareParam->af32Bias[2][3] = 30;
    pstSoftWareParam->af32Bias[2][4] = 33;
    pstSoftWareParam->af32Bias[2][5] = 23;

step3.

重新返回到big-little 目录下,进行make,make完成后会在nnie中生成一个可执行的文件,就是我们有个nnie编译出来的结果。

将整个big-little文件拷贝到板子上,最好是使用nfs挂载上硬盘,也可以使用其他方式拷贝过去。

板子上电后需要先加载各部分的驱动文件,也就是load  ko文件,具体上电流程看此贴:

3559A上电后需要做什么:https://blog.csdn.net/qq_34533248/article/details/102502038

将文件拷贝过去之后,进去nnie文件,使用以下命令完成首次推理。

./sample_nnie_main 8

输出log如下

 

 

下一篇:如何将sample代码重构并封装成自己的代码(施工中...)

 

 

 

 

 

 

 

 

相关推荐
<p style="text-align:left;"> <span style="font-size:16px;">本课程内容分为5个部分:</span> </p> <p style="text-align:left;"> <span style="font-size:16px;">1.海思35xx SDK资料梳理以及SVP相关文档详细介绍</span> </p> <p style="text-align:left;"> <span style="font-size:16px;">2.将darknet框架训练出来的yolov3模型转换成caffemodel</span> </p> <div style="text-align:left;"> <span style="font-size:16px;">3.RuyiStudio工具的安装及其使用</span><br /> </div> <div style="text-align:left;"> <span style="font-size:16px;">4.Windows上仿真代码的运行以及代码分析</span><br /> </div> <p style="text-align:left;"> <span style="font-size:16px;">5.开发板上的sample代码的运行以及代码分析</span> </p> <p style="text-align:left;"> <span style="font-size:16px;"><br /> </span> </p> <p style="text-align:left;"> <span style="font-size:16px;"><span style="background-color:#FFFFFF;color:#000000;font-size:16px;">本课程特色:</span></span> </p> <p style="text-align:left;"> <span style="font-size:16px;">1. 不是照本宣科,着力把背后的原理讲清楚。</span> </p> <p style="text-align:left;"> <span style="font-size:16px;">2. 实用性很强。 目标检测算法是计算机视觉基本任务之一,而YOLOv3则仍然是目前工业界中应用非常广泛的算法模型,从速度、准确度以及易用性的trade-off来看,它目前仍然是最好的算法模型之一。</span> </p> <p style="text-align:left;"> <span style="font-size:16px;"><br /> </span> </p>
<p> <span style="font-size:18px;color:#E53333;"><strong><span style="color:#000000;">课程演示环境:Ubuntu</span><br /> <br /> <span style="color:#000000;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:训练自己的数据集》,课程链接https://edu.csdn.net/course/detail/28748</span><br /> <br /> YOLOv4</strong></span><span style="font-size:18px;color:#E53333;"><strong>来了!速度和精度双提升!</strong></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">与</span><span style="font-size:16px;"> YOLOv3 </span><span style="font-size:16px;">相比,新版本的</span><span style="font-size:16px;"> AP(精度) </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> FPS </span><span style="font-size:16px;">(每秒帧率)分别提高了</span><span style="font-size:16px;"> 10% </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> 12%</span><span style="font-size:16px;">。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用</span><span style="font-size:16px;">labelImg</span><span style="font-size:16px;">标注和使用</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">本课程的</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">使用</span><span style="font-size:16px;">AlexAB/darknet</span><span style="font-size:16px;">,在</span><span style="font-size:16px;">Ubuntu</span><span style="font-size:16px;">系统上做项目演示。包括:安装</span><span style="font-size:16px;">YOLOv4、</span><span style="font-size:16px;">标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计</span><span style="font-size:16px;">(mAP</span><span style="font-size:16px;">计算和画出</span><span style="font-size:16px;">PR</span><span style="font-size:16px;">曲线</span><span style="font-size:16px;">)</span><span style="font-size:16px;">和先验框聚类分析。还将介绍改善</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标训练性能的技巧。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">除本课程《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:训练自己的数据集》外,本人将推出有关</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测的系列课程。请持续关注该系列的其它视频课程,包括:</span><span></span> </p> <p> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:人脸口罩佩戴识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:中国交通标志识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测:原理与源码解析》</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858382698.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858535136.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260859074920.jpg" alt="" /><br /> </span> </p> <p> <span></span> </p> <p> <span></span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页