背景
s
i
n
(
x
)
/
x
sin(x) / x
sin(x)/x的极限在很多情况下都要用到,近日突然开始思考该极限的证明过程。
首先不能用洛必达法则,因为
s
i
n
(
x
)
sin(x)
sin(x)的导函数就是根据这个极限算出来的。
今可用夹逼定理证明之。
证明过程
考虑如下单位圆:
△
O
A
B
\triangle{OAB}
△OAB的面积可以表示为:
S
△
O
A
B
=
1
2
⋅
O
A
⋅
B
M
=
1
2
⋅
∣
sin
θ
∣
S_{\triangle{OAB}} = \frac{1}{2}\cdot{OA}\cdot{BM}=\frac{1}{2}\cdot|{\sin{\theta}}|
S△OAB=21⋅OA⋅BM=21⋅∣sinθ∣
扇形
O
A
B
OAB
OAB的面积可以表示为:
S
扇
形
O
A
B
=
1
2
⋅
O
A
⋅
弧
A
B
=
1
2
⋅
∣
θ
∣
S_{扇形{OAB}} = \frac{1}{2}\cdot{OA}\cdot弧{AB}=\frac{1}{2}\cdot|\theta|
S扇形OAB=21⋅OA⋅弧AB=21⋅∣θ∣
△
O
A
C
\triangle{OAC}
△OAC的面积可以表示为:
S
△
O
A
C
=
1
2
⋅
O
A
⋅
A
C
=
1
2
⋅
∣
tan
θ
∣
S_{\triangle{OAC}} = \frac{1}{2}\cdot{OA}\cdot{AC}=\frac{1}{2}\cdot{|\tan{\theta}}|
S△OAC=21⋅OA⋅AC=21⋅∣tanθ∣
可以看出
S
△
O
A
B
≤
S
扇
形
O
A
B
≤
S
△
O
A
C
S_{\triangle{OAB}} \leq S_{扇形{OAB}} \leq S_{\triangle{OAC}}
S△OAB≤S扇形OAB≤S△OAC,所以带入上面三个式子可得:
1
2
⋅
∣
sin
θ
∣
≤
1
2
⋅
∣
θ
∣
≤
1
2
⋅
∣
tan
θ
∣
\frac{1}{2}\cdot{|\sin{\theta}}| \leq \frac{1}{2}\cdot |\theta| \leq \frac{1}{2}\cdot{ |\tan{\theta}} |
21⋅∣sinθ∣≤21⋅∣θ∣≤21⋅∣tanθ∣
将每一个式子都乘以2,同时将
tan
θ
\tan{\theta}
tanθ写成
sin
θ
/
cos
θ
\sin{\theta} / \cos{\theta}
sinθ/cosθ, 得到:
∣
sin
θ
∣
≤
∣
θ
∣
≤
∣
sin
θ
cos
θ
∣
|\sin{\theta}| \leq |{\theta}| \leq |\frac{\sin{\theta}}{\cos{\theta}}|
∣sinθ∣≤∣θ∣≤∣cosθsinθ∣
θ
\theta
θ趋近于0而不等于0时,
sin
θ
\sin{\theta}
sinθ一定不等于0,所以可以给上式同时除以
sin
θ
\sin{\theta}
sinθ,得到:
1
≤
∣
θ
∣
∣
sin
θ
∣
≤
1
∣
cos
θ
∣
1 \leq \frac{|\theta|}{|\sin{\theta}|} \leq \frac{1}{|\cos{\theta|}}
1≤∣sinθ∣∣θ∣≤∣cosθ∣1
无论
θ
\theta
θ是从正数趋于0还是从负数趋于0, 上式的绝对值都可以去掉,同时对不等式的所有式子都取倒数后可得:
cos
θ
≤
sin
θ
θ
≤
1
\cos{\theta} \leq \frac{\sin{\theta}} {\theta} \leq 1
cosθ≤θsinθ≤1
令
θ
\theta
θ趋于0,上式中的第一个式子可以直接写出结果,为1,第二个式子是我们最终要求的极限,第三个式子为常量1, 所以根据夹逼定理,同时将
θ
\theta
θ写成
x
x
x,最终可得:
lim
x
→
0
sin
x
x
=
1
\lim_{x \to 0} \frac{\sin{x}} {x} = 1
x→0limxsinx=1
证毕。