夹逼定理证明 sin(x) / x极限

背景

s i n ( x ) / x sin(x) / x sin(x)/x的极限在很多情况下都要用到,近日突然开始思考该极限的证明过程。
首先不能用洛必达法则,因为 s i n ( x ) sin(x) sin(x)的导函数就是根据这个极限算出来的。
今可用夹逼定理证明之。

证明过程

考虑如下单位圆:
在这里插入图片描述

△ O A B \triangle{OAB} OAB的面积可以表示为:
S △ O A B = 1 2 ⋅ O A ⋅ B M = 1 2 ⋅ ∣ sin ⁡ θ ∣ S_{\triangle{OAB}} = \frac{1}{2}\cdot{OA}\cdot{BM}=\frac{1}{2}\cdot|{\sin{\theta}}| SOAB=21OABM=21sinθ
扇形 O A B OAB OAB的面积可以表示为:
S 扇 形 O A B = 1 2 ⋅ O A ⋅ 弧 A B = 1 2 ⋅ ∣ θ ∣ S_{扇形{OAB}} = \frac{1}{2}\cdot{OA}\cdot弧{AB}=\frac{1}{2}\cdot|\theta| SOAB=21OAAB=21θ
△ O A C \triangle{OAC} OAC的面积可以表示为:
S △ O A C = 1 2 ⋅ O A ⋅ A C = 1 2 ⋅ ∣ tan ⁡ θ ∣ S_{\triangle{OAC}} = \frac{1}{2}\cdot{OA}\cdot{AC}=\frac{1}{2}\cdot{|\tan{\theta}}| SOAC=21OAAC=21tanθ
可以看出 S △ O A B ≤ S 扇 形 O A B ≤ S △ O A C S_{\triangle{OAB}} \leq S_{扇形{OAB}} \leq S_{\triangle{OAC}} SOABSOABSOAC,所以带入上面三个式子可得:
1 2 ⋅ ∣ sin ⁡ θ ∣ ≤ 1 2 ⋅ ∣ θ ∣ ≤ 1 2 ⋅ ∣ tan ⁡ θ ∣ \frac{1}{2}\cdot{|\sin{\theta}}| \leq \frac{1}{2}\cdot |\theta| \leq \frac{1}{2}\cdot{ |\tan{\theta}} | 21sinθ21θ21tanθ
将每一个式子都乘以2,同时将 tan ⁡ θ \tan{\theta} tanθ写成 sin ⁡ θ / cos ⁡ θ \sin{\theta} / \cos{\theta} sinθ/cosθ, 得到:
∣ sin ⁡ θ ∣ ≤ ∣ θ ∣ ≤ ∣ sin ⁡ θ cos ⁡ θ ∣ |\sin{\theta}| \leq |{\theta}| \leq |\frac{\sin{\theta}}{\cos{\theta}}| sinθθcosθsinθ
θ \theta θ趋近于0而不等于0时, sin ⁡ θ \sin{\theta} sinθ一定不等于0,所以可以给上式同时除以 sin ⁡ θ \sin{\theta} sinθ,得到:
1 ≤ ∣ θ ∣ ∣ sin ⁡ θ ∣ ≤ 1 ∣ cos ⁡ θ ∣ 1 \leq \frac{|\theta|}{|\sin{\theta}|} \leq \frac{1}{|\cos{\theta|}} 1sinθθcosθ1
无论 θ \theta θ是从正数趋于0还是从负数趋于0, 上式的绝对值都可以去掉,同时对不等式的所有式子都取倒数后可得:
cos ⁡ θ ≤ sin ⁡ θ θ ≤ 1 \cos{\theta} \leq \frac{\sin{\theta}} {\theta} \leq 1 cosθθsinθ1
θ \theta θ趋于0,上式中的第一个式子可以直接写出结果,为1,第二个式子是我们最终要求的极限,第三个式子为常量1, 所以根据夹逼定理,同时将 θ \theta θ写成 x x x,最终可得:
lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0} \frac{\sin{x}} {x} = 1 x0limxsinx=1
证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值