数学分析(三)-函数极限4-两个重要的极限1: lim_{ₓ→₀} [(sinx)/x]=1【利用夹逼定理,cosx<(sinx)/x<1】

该篇博客通过夹逼定理证明了当 x 趋近于 0 时,函数 (sin(x))/x 的极限为 1,并通过示例进一步探讨了类似极限问题的求解方法,揭示了函数极限的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、证明 lim ⁡ x → 0 sin ⁡ x x = 1 \lim \limits_{x \rightarrow 0} \cfrac{\sin x}{x}=1 x0limxsinx=1


在 §1 例 4 中我们已导出如下不等式:

sin ⁡ x < x < tan ⁡ x ( 0 < x < π 2 ) , \sin x<x<\tan x \quad\left(0<x<\cfrac{\pi}{2}\right), sinx<x<tanx(0<x<2π),

除以 sin ⁡ x \sin x sinx, 得到 1 < x sin ⁡ x < 1 cos ⁡ x 1<\cfrac{x}{\sin x}<\cfrac{1}{\cos x} 1<sinxx<cosx1, 由此得

cos ⁡ x < sin ⁡ x x < 1 .  (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值