一、证明 lim x → 0 sin x x = 1 \lim \limits_{x \rightarrow 0} \cfrac{\sin x}{x}=1 x→0limxsinx=1
证
在 §1 例 4 中我们已导出如下不等式:
sin x < x < tan x ( 0 < x < π 2 ) , \sin x<x<\tan x \quad\left(0<x<\cfrac{\pi}{2}\right), sinx<x<tanx(0<x<2π),
除以 sin x \sin x sinx, 得到 1 < x sin x < 1 cos x 1<\cfrac{x}{\sin x}<\cfrac{1}{\cos x} 1<sinxx<cosx1, 由此得
cos x < sin x x < 1 . (