数学分析(十五)-傅里叶级数3-收敛定理的证明2:傅里叶级数收敛定理证明

现在证明定理 15.3 (收敛定理), 重述如下:

若以 2 π 2 \pi 2π 为周期的函数 f f f [ − π , π ] [-\pi, \pi] [π,π] 上按段光滑, 则在每一点 x ∈ [ − π , π ] , f x \in[-\pi, \pi], f x[π,π],f 的傅里叶级数 (本章 § 1 § 1 §1 的 (12) 式) 收玫于 f f f
在点 x x x 的左、右极限的算术平均值, 即

f ( x + 0 ) + f ( x − 0 ) 2 = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) , \cfrac{f(x+0)+f(x-0)}{2}=\cfrac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right), 2f(x+0)+f(x0)=2a0+n=1(ancosnx+bnsinnx),

其中 a n , b n a_{n}, b_{n} an,bn f f f傅里叶系数.


只要证明在每一点 x x x 处下述极限成立:
lim ⁡ n → ∞ [ f ( x + 0 ) + f ( x − 0 ) 2 − S n ( x ) ] = 0 , \lim \limits_{n \rightarrow \infty}\left[\cfrac{f(x+0)+f(x-0)}{2}-S_{n}(x)\right]=0, nlim[2f(x+0)+f(x0)Sn(x)]=0,

lim ⁡ n → ∞ [ f ( x + 0 ) + f ( x − 0 ) 2 − 1 π ∫ − π π f ( x + t ) sin ⁡ ( n + 1 2 ) t 2 sin ⁡ t 2   d t ] = 0 , \lim \limits_{n \rightarrow \infty}\left[\cfrac{f(x+0)+f(x-0)}{2}-\cfrac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) \cfrac{\sin \left(n+\cfrac{1}{2}\right) t}{2 \sin \cfrac{t}{2}} \mathrm{~d} t\right]=0, nlim 2f(x+0)+f(x0)π1ππf(x+

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值