极限与连续

极限与连续

1. 简单极限

l i m x → 4 x + 3 x 2 + 1 lim_{x\to4} \frac{x+3}{x^2+1} limx4x2+1x+3 的计算
直接带入即可
l i m x → 4 x + 3 x 2 + 1 = 4 + 3 4 2 + 1 = 7 17 lim_{x\to4} \frac{x+3}{x^2+1} = \frac{4+3}{4^2+1} = \frac{7}{17} limx4x2+1x+3=42+14+3=177

2. 求导不一定更难

l i m x → 0 f ( x + Δ x ) − f ( x 0 ) x − x 0 lim_{x\to_0} \frac{f(x+\Delta x)-f(x_0)}{x-x_0} limx0xx0f(x+Δx)f(x0)
当x → x 0 \to x_0 x0时,该式子永远是 0 0 \frac{0}{0} 00无法带入运算,需要一些其他方法来计算

右极限

l i m x → x 0 + f ( x ) lim_{x\to x_0^+} f(x) limxx0+f(x)称为函数的右极限
x → x 0 + 表 示 x > 0 的 一 小 块 邻 域 x\to x_0^+ 表示x>0的一小块邻域 xx0+x>0
在这里插入图片描述

左极限

l i m x → x 0 − f ( x ) lim_{x\to x_0^-} f(x) limxx0f(x)称为函数的左极限
x → x 0 − 表 示 x &lt; 0 的 一 小 块 邻 域 x\to x_0^- 表示x&lt;0的一小块邻域 xx0x<0
在这里插入图片描述

例如

f ( x ) = { x + 1 , x &gt; 1 − x + 2 , x &lt; 0 f(x)=\begin{cases}x+1, &amp;x &gt; 1 \cr -x+2, &amp;x&lt;0\end{cases} f(x)={x+1,x+2,x>1x<0
在这里插入图片描述
l i m x → 0 + f ( x ) = l i m x → 0 x + 1 = 1 lim_{x_\to 0^+ }f(x) = lim_{x\to0}x+1 = 1 limx0+f(x)=limx0x+1=1
l i m x → 0 − f ( x ) = l i m x → 0 − x + 2 = 2 lim_{x_\to 0^- }f(x) = lim_{x\to0}-x+2 = 2 limx0f(x)=limx0x+2=2
求极限不需要知道函数在该点的函数值,甚至不需要定义

连续的定义

x → x 0 x \to x_0 xx0时, f ( x 0 ) f(x_0) f(x0)极限的值 l i m x → x 0 f ( x ) lim_{x\to x_0}f(x) limxx0f(x)等于函数的值 f ( x 0 ) f(x_0) f(x0)

  • 连续
    极限存在

    • 左极限存在
    • 右极限存在
    • 二者相等
  • f(x)在该点有定义

  • 极限值与函数值相等 l i m x → x 0 f ( x ) lim_{x\to x_0}f(x) limxx0f(x)= f ( x 0 ) f(x_0) f(x0)

跳跃间断点

左右极限均存在,但不相等
tips:连续的重要性,股票函数的左右连续性会影响不同的定价测略
在这里插入图片描述

可去间断点

左右极限均存在,且相等,但与该点函数值不等,或该点无定义
例如: g ( x ) = s i n x x g(x) = \frac{sinx}{x} g(x)=xsinx该函数在x = 0处无定义,而该处极限是 l i m x → 0 s i n x = 1 lim_{x\to0}\frac{sin}{x} = 1 limx0xsin=1,所以是去间断点

例如: f ( x ) = 1 − c o s x x f(x) = \frac{1-cosx}{x} f(x)=x1cosx该处极限是 l i m x → 0 1 − c o s x x = 0 lim_{x\to0}\frac{1-cosx}{x} = 0 limx0x1cosx=0,所以也是去间断点

无穷间断点

左右极限至少有一处极限是无穷
在这里插入图片描述

y = 1 x y = \frac{1}{x} y=x1
l i m x → 0 − 1 x = − ∞ lim_{x\to0^-}\frac{1}{x} = -\infty limx0x1=
l i m x → 0 + 1 x = + ∞ lim_{x\to0^+}\frac{1}{x} = +\infty limx0+x1=+


y , = − 1 x 2 y^,=-\frac{1}{x^2} y=x21
在这里插入图片描述
导数的图像与原函数不必相同
l i m x → 0 − − 1 x 2 = l i m x → 0 + − 1 x 2 = 0 lim_{x\to0^-}-\frac{1}{x^2} = lim_{x\to0^+}-\frac{1}{x^2}=0 limx0x21=limx0+x21=0
导函数在x=0处的极限存在
由上例可知:奇函数 → 求 导 \to_{求导} 偶函数

其他的间断点

例如 y = s i n 1 x y = sin \frac{1}{x} y=sinx1
x → 0 x\to 0 x0时无限震荡,是震荡间断点,不存在极限
在这里插入图片描述

证明定理:可导必连续

定理:若f在 x 0 x_0 x0处可导,则 x 0 x_0 x0处连续
证明:
连续的定义: l i m x → x 0 f ( x ) = f ( x 0 ) lim_{x\to x_0}f(x) = f(x_0) limxx0f(x)=f(x0)
可以变形为 l i m x → x 0 ( f ( x ) − f ( x 0 ) ) = 0 lim_{x\to x_0}(f(x) - f(x_0) )= 0 limxx0f(x)f(x0)=0
f , ( x ) = l i m x → x 0 f ( x ) − f ( x 0 ) x − x 0 = A f^,(x) = lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=A f,(x)=limxx0xx0f(x)f(x0)=A
将二者联系起来
l i m x → x 0 ( f ( x ) − f ( x 0 ) ) = l i m x → x 0 f ( x ) − f ( x 0 ) x − x 0 ∗ ( ( x ) − ( x 0 ) ) lim_{x\to x_0}(f(x) - f(x_0) )= lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}*((x)-(x_0)) limxx0f(x)f(x0)=limxx0xx0f(x)f(x0)((x)(x0))
= l i m x → x 0 f , ( x ) ∗ ( x − x 0 ) = A ∗ 0 = 0 =lim_{x\to x_0}f^,(x)*(x-x_0) = A*0=0 =limxx0f,(x)(xx0)=A0=0
得证
极限代表无限趋紧却永远达不到该值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值