中文Transformer(BERT,GPT,T5等)预训练模型权重

中文Transformer预训练模型权重

最近业余时间把我们去年和今年之前训练的基于开源语料的预训练权重适配到了Huggingface model hub中。用户可以通过Huggingface Transformers项目代码或者Huggingface网站上提供的在线推理接口轻易的使用这些权重。

这些权重有如下特点:

  1. 可复现;我们在huggingface上开源的所有权重,均是使用公开的语料进行训练的,并且我们在huggingface模型权重的readme中给出了详细的训练过程的说明,用户如果有足够的算力可以轻易的复现。我们认为这些权重可以作为一个可靠的中文基准。
  2. 模型质量较好;我们通过定量和定性的方式对这些预训练权重进行了评估。这些预训练权重有着比较有竞争力的表现。
  3. 类型丰富;我们提供了各种类型的预训练权重,后面会具体介绍。
  4. 所有的权重均使用 UER-py 预训练得到,然后通过转换脚本进行转换,用Huggingface Transformers进行加载推理。这套流程在我们的实践中用起来比较可靠和舒服。当然UER项目内部也提供了比较完善的微调推理相关的脚本,欢迎大家使用。

这里对我们目前开源的权重进行简要的描述:
1 我们借鉴Google在英文上的工作,预训练24个不同大小的RoBERTa权重:

https://huggingface.co/uer/chinese_roberta_L-2_H-128

Transformer预训练权重是指通过使用公开的语料进行训练而得到的可复现的模型权重。这些权重在huggingface上进行了开源,并提供了详细的训练过程说明,用户可以根据需要轻松地复现这些权重。这些预训练权重经过定量和定性的评估,质量较好且具有竞争力的性能表现。此外,还提供了各种类型的预训练权重,可以根据具体需求选择合适的模型。这些权重是使用UER-py进行预训练,然后通过转换脚本转换成Huggingface Transformers可以加载和推理的格式。对于微调和推理,UER项目内部也提供了相应的脚本。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [中文TransformerBERTGPT,T5等)预训练模型权重](https://blog.csdn.net/qq_34832393/article/details/115463344)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Vision Transformer模型预训练权重简析](https://blog.csdn.net/caoyz/article/details/125108578)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值