Python决策树转规则代码

本文介绍了如何从scikit-learn的决策树模型中提取决策规则,这对于将机器学习模型的决策过程转化为业务可理解的规则至关重要。通过链接提供的Stack Overflow资源,可以学习到详细的操作步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在使用决策树进行规则挖掘分析时,如何将决策树的分割点转化为规则,用于业务部署上线??

可以看看这个代码:

首先建立一个决策树:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.model_selection import train_test_split
import pandas as pd
import graphviz
# 1. 根据需求,导入数据集(样本命名为X,目标命名为y)
X = iris.data
y = iris.target

# 2. 拆分数据集合
x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
# 3.声明决
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python风控

支持他!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值