数据集(1):从0了解visdrone

VisDrone是一个针对无人机视觉数据的大型基准测试,用于推动计算机视觉在无人机领域的应用。它提供了工具包和数据集,支持图像中的对象检测任务。数据集分为训练、验证和测试挑战三个部分,包含详细的注释信息,如截断率和遮挡率。 VisDrone2018-DET工具包包括用于评估检测器的代码,而数据集包含了训练和验证数据,以及用于测试的挑战数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VisDrone – Vision Meets Drones: A Challenge  

VisDrone (VisDrone) · GitHub

配备摄像机的无人机或通用无人机已经快速部署到广泛的应用中,包括农业,航空摄影,快速交付和监视。

因此,对从这些平台收集的视觉数据的自动理解的要求越来越高,这使计算机视觉越来越紧密地应用于无人机。

我们很高兴为大规模的基准测试提供详细说明的真实性,以完成各种重要的计算机视觉任务,称为VisDrone,以使视觉满足无人机的要求。

简单来讲,visdrone就是一个比赛,我们训练模型的时候可以使用它的工具包和数据集。

##工具包

  • VisDrone2018-DET-tookit-master
### 关于 VisDrone2019 数据集 #### 数据集概述 VisDrone2019 是一个大规模无人机视角下的目标检测、跟踪以及多目标追踪的数据集[^1]。该数据集旨在推动计算机视觉领域内空中视角下物体识别的研究进展。 #### 官方文档与下载链接 官方提供了详细的文档来指导研究人员如何使用此数据集。可以通过访问 [VisDrone官方网站](http://aiskyeye.com/) 获取最新版本的数据集及其对应文档。网站上不仅有不同年份的比赛资料,还包括了各类教程和支持信息。 #### 使用说明 为了方便用户快速开始研究工作,在安装好必要的依赖库之后,可以按照以下方式加载并处理图像: ```python from pycocotools.coco import COCO import os.path as osp # 初始化COCO API用于读取json格式的标签文件 anno_file = 'path/to/annotations' coco = COCO(anno_file) # 显示类别名称 cats = coco.loadCats(coco.getCatIds()) cat_names = [cat['name'] for cat in cats] print(f'Categories: {", ".join(cat_names)}') ``` 针对特定应用场景如上述提到的子图拼图评估任务,则需调整验证集中图片和标注文件的位置参数,并设定切片大小及重叠比例等超参: ```yaml EvalDataset: !SlicedCOCODataSet image_dir: VisDrone2019-DET-val anno_path: val.json dataset_dir: dataset/visdrone sliced_size: [640, 640] overlap_ratio: [0.25, 0.25] ``` #### 比赛评测指标 在VisDrone挑战赛中,通常采用多种评价标准衡量模型性能,主要包括但不限于以下几个方面: - **AP (Average Precision)**:平均精度,用来计算每个类别的预测效果; - **AR (Average Recall)** :召回率曲线下的面积,反映的是系统检出能力; - **mAP (mean Average Precision)** : 所有类别上的 AP 平均值; 这些度量可以帮助参赛者更好地理解自己算法的优势与不足之处,从而针对性地改进模型结构或训练策略。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值