泊松过程和维纳过程

泊松过程和维纳过程

关键词:独立增量过程

  泊松过程和维纳过程是两个典型的随机过程,属于独立增量过程。

  什么是独立增量过程呢?

在互不重叠的区间上,状态的增量是相互独立的

  给定一个二阶矩过程: { X ( t ) , t ≥ 0 } \{X(t),t\ge 0\} {X(t),t0} X ( t ) − X ( s ) , 0 ≤ s ≤ t X(t)-X(s),0\le s\le t X(t)X(s),0st为随机过程在区间 ( s , t ] (s,t] (s,t]上的增量;
  对于任何选中的正整数 n n n和任何选定的 0 ≤ t 0 < t 1 < t 2 < ⋅ ⋅ ⋅ < t n 0\le t_0< t_1<t_2<···<t_n 0t0<t1<t2<<tn n n n个增量:
X ( t 1 ) − X ( t 0 ) , X ( t 2 ) − X ( t 1 ) , ⋅ ⋅ ⋅ , X ( t n ) − X ( t n − 1 ) X(t_1)-X(t_0),X(t_2)-X(t_1),···,X(t_n)-X(t_{n-1}) X(t1)X(t0),X(t2)X(t1),,X(tn)X(tn1)互相独立,则称 { X ( t ) , t ≥ 0 } \{X(t),t\ge 0\} {X(t),t0}独立增量过程

  
  什么叫增量具有平稳性?
  对任意的实数 h h h 0 ≤ s + h < t + h 0\le s+h< t+h 0s+h<t+h X ( t + h ) − X ( s + h ) X(t+h)-X(s+h) X(t+h)X(s+h) X ( t ) − X ( h ) X(t)-X(h) X(t)X(h)具有相同的分布。这时称增量具有平稳性。也就是说,增量的分布函数只依赖于时间差,而不是在于什么时候的分量( t 、 s t、s ts)。
  当增量具有平稳性时,称相应的独立增量过程是齐次的或者时齐的

1. 泊松过程

  用 { N ( t ) , t ≥ 0 } \{N(t),t\ge 0\} {N(t),t0}表示一个计数过程,如图:

计数过程典型样本函数
  增量 N ( t 0 , t ) N(t_0,t) N(t0,t)表示增量内出现的点数,出现 k k k个点的概率为:
P k ( t 0 , t ) = P { N ( t 0 , t ) = k } ,   k = 1 , 2 , ⋅ ⋅ ⋅ P_k(t_0,t)=P\{N(t_0,t)=k\}, \ k=1,2,··· Pk(t0,t)=P{N(t0,t)=k}, k=1,2,
  如果 N ( t ) N(t) N(t)满足以下条件:

  1. 在互不重叠的区间上的增量具有独立性;
  2. 对于充分小的 Δ t \Delta t Δt:
    P 1 { N ( t , t + Δ t ) } = P { N ( t , t + Δ t ) = 1 } = λ Δ t + o ( Δ t ) P_1\{N(t,t+\Delta t)\}=P\{N(t,t+\Delta t)=1\}=\lambda \Delta t+o(\Delta t) P1{N(t,t+Δt)}=P{N(t,t+Δt)=1}=λΔt+o(Δt)其中 λ > 0 \lambda> 0 λ>0称为过程 N ( t ) N(t) N(t)的强度,而 o ( Δ t ) o(\Delta t) o(Δt) Δ t → 0 \Delta t \rightarrow 0 Δt0 Δ t \Delta t Δt的高阶无穷小。
  3. 对于充分小的 Δ t \Delta t Δt:
    ∑ j = 2 + ∞ P j { N ( t , t + Δ t ) } = P { N ( t , t + Δ t ) = j } = o ( Δ t ) \sum _{j=2}^{+\infty} P_j\{N(t,t+\Delta t)\}=P\{N(t,t+\Delta t)=j\}=o(\Delta t) j=2+Pj{N(t,t+Δt)}=P{N(t,t+Δt)=j}=o(Δt)
  4. N ( 0 ) = 0 N(0)=0 N(0)=0

条件2,3的意思是:在很小的时间间隔内,最多只有一个质点出现,而出现两个及以上质点的概率几乎为零

  将满足此条件的计数过程 { N ( t ) , t ≥ 0 } \{N(t),t\ge 0\} {N(t),t0}称为强度为 λ \lambda λ的泊松过程
  泊松分布的参数 λ \lambda λ是单位时间或单位面积内随机事件的平均发生率。
  相应的质点流(或者说质点出现的随机时刻 t 1 , t 2 , ⋅ ⋅ ⋅ t_1,t_2,··· t1,t2,)称为强度为 λ \lambda λ的泊松流

  条件2,3也可以这样表述:
  对任意的 t > t 0 ≥ 0 t>t_0\ge 0 t>t00,增量:
N ( t ) − N ( t 0 ) ∼ π [ λ ( t − t 0 ) ] N(t)-N(t_0)\sim \pi [\lambda(t-t_0)] N(t)N(t0)π[λ(tt0)]
P { N ( t ) − N ( t 0 ) = k } = e − λ ( t − t 0 ) [ λ ( t − t 0 ) ] k k ! , k = 1 , 2 , ⋅ ⋅ ⋅ P\{N(t)-N(t_0)=k\}=\frac{e^{-\lambda (t-t_0)}[\lambda (t-t_0)]^k}{k!},k=1,2,··· P{N(t)N(t0)=k}=k!eλ(tt0)[λ(tt0)]k,k=1,2,

2. 维纳过程

  什么又是维纳过程?
  如果一个二阶矩 { W ( t ) , t ≥ 0 } \{W(t),t\ge 0\} {W(t),t0}满足以下条件:

  1. 具有独立增量
  2. W ( 0 ) = 0 W(0)=0 W(0)=0
  3. 对任意的 t > s ≥ 0 t>s\ge 0 t>s0,增量:
    W ( t ) − W ( s ) ∼ N ( 0 , σ 2 ( t − s ) ) , σ > 0 W(t)-W(s)\sim N(0,\sigma^2(t-s)),\sigma >0 W(t)W(s)N(0,σ2(ts))σ>0此过程称为维特过程
      由条件3可知,维纳过程的分布至于时间差有关,所以它是齐次的独立增量过程
      
    在这里插入图片描述

总的说来,泊松过程和维纳过程是两种齐次的独立增量过程。
只不过泊松过程的增量服从泊松分布,维纳过程的增量服从高斯分布

参考:

《概率论与数理统计》(浙大)

  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
泊松过程是一种重要的数学模型,常用于描述随机事件在时间上独立且按指数分布发生的情况。Matlab是一种功能强大的科学计算软件,可以对泊松过程进行建模和分析。 在Matlab中,我们可以使用泊松分布函数来生成服从泊松过程的随机数序列。泊松分布函数在Matlab中可以使用`poissrnd()`函数进行生成。该函数有两个参数,第一个参数是期望发生次数lambda,第二个参数是生成随机数的个数。例如,我们可以使用以下代码生成一个服从泊松分布的随机数序列: `X = poissrnd(lambda, n)`,其中X是生成的随机数序列,n是生成的随机数个数。 除了生成泊松过程的随机数序列外,我们还可以使用Matlab对泊松过程进行分析。例如,我们可以使用`mean()`函数计算出随机数序列的均值,这个均值就是随机事件发生的平均次数。我们还可以使用`histogram()`函数绘制出随机事件发生次数的直方图,通过观察直方图的形状,我们可以对随机事件的分布情况有一个直观的了解。 此外,在Matlab中还有一些其他的函数可以用来分析泊松过程,例如`poisspdf()`函数可以计算出随机事件发生次数为k的概率,`poisscdf()`函数可以计算出随机事件发生次数不超过k的概率。 总之,Matlab提供了丰富的函数和工具来进行泊松过程的建模和分析,通过合理的使用这些函数和工具,我们可以更好地理解和处理泊松过程相关的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值