
CenterFusion
文章平均质量分 57
HIT_Vanni
上海智驾科技融合算法工程师
哈尔滨工业大学汽车工程学院智能网联与无人驾驶研究所毕业
展开
-
【CenterFusion】损失函数Loss初始化_get_losses()函数以及计算过程forward()函数-CenterFusion/src/lib/trainer.py
介绍损失函数的初始化部分_get_losses()函数及loss计算入口函数为run_epoch()中的model_with_loss()函数中的forward()函数原创 2024-03-17 23:03:22 · 1125 阅读 · 0 评论 -
【CenterFusion】run_epoch()函数-训练一轮epoch-CenterFusion/src/lib/trainer.py
run_epoch作用:CenterFusion 项目训练一轮epoch过程。文件位置:CenterFusion/src/lib/trainer.py。原创 2024-03-17 22:45:29 · 364 阅读 · 0 评论 -
【CenterFusion】模型的创建、导入、保存CenterFusion/src/lib/model/model.py
文件作用:模型的创建、导入、保存。原创 2024-03-17 22:41:30 · 623 阅读 · 0 评论 -
【CenterFusion】参数处理CenterFusion/src/lib/opts.py
文件作用:train.sh 脚本中参数的处理。原创 2024-03-17 22:38:13 · 317 阅读 · 0 评论 -
【CenterFusion】CenterFusion网络架构概述
CenterFusion 网络架构首先利用全卷积骨干网提取目标物体中心点的图像特征,再回归到物体的其它属性,如三维位置、方向和尺寸,并获得初步的 3D Box截锥关联模块将雷达检测结果与对应目标中心点关联(雷达检测结果映射到图像平面)并生成雷达特征然后将图像和雷达特征连接起来, 再二次回归到目标属性,如深度、旋转以及速度等三维属性来细化初步的 3D Box该网络架构主要可以分为两个部分分析,一个是上面一行的图像目标检测,另一个是下面一行的雷达点云数据处理。原创 2024-03-15 15:25:11 · 2492 阅读 · 0 评论 -
【CenterFusion】测试执行过程CenterFusion/src/test.py
文件作用:CenterFusion 项目验证的执行过程。原创 2024-01-24 17:42:24 · 767 阅读 · 0 评论 -
【CenterFusion】测试脚本CenterFusion/experiments/test.sh
【CenterFusion】测试脚本CenterFusion/experiments/test.sh。原创 2024-01-24 17:40:00 · 518 阅读 · 0 评论 -
【CenterFusion】训练执行过程CenterFusion/src/main.py
文件作用:CenterFusion 项目训练的执行过程。原创 2024-01-19 17:39:44 · 896 阅读 · 0 评论 -
【CenterFusion】训练脚本CenterFusion/experiments/train.sh
【CenterFusion】训练脚本CenterFusion/experiments/train.sh。原创 2024-01-19 17:34:26 · 534 阅读 · 0 评论 -
【Centerfusion】nuScenes数据转化为COCO格式CenterFusion/src/tools/convert_nuScenes.py
文件作用:将 nuScenes 数据转化为 COCO 格式原创 2024-01-19 17:32:35 · 964 阅读 · 1 评论 -
详解CenterFusion损失函数初始化及前向传播过程
损失函数类GenericLoss()的定义在CenterFusion/src/lib/trainer.py23行,其中调用了Module父类的构造函数,位置在anaconda3/envs/pytorch17/lib/python3.7/site-packages/torch/nn/modules/module.py的223行。原创 2023-06-02 18:08:00 · 713 阅读 · 0 评论 -
CenterFusion数据处理函数__getitem__()解析
CenterFusion的数据处理函数__getitem__()在/Centerfusion/src/lib/dataset/datasets/generic_dataset.py下的GenericDataset类中在经过convert_nuScenes.py后会生成nuScence_COCO格式的json文件,分别为train.json, val.json, mini_train.json, mini_val.json, test.json这五个文件原创 2023-05-24 11:33:02 · 1303 阅读 · 2 评论 -
标准COCO格式json文件内容
coco标注文件的格式为.json文件,且所有图片的标注信息在一个.json文件里,该json文件由字典组成,该字典有五个key,其中coco的坐标信息为(xmin,ymin,w,h),(xmin,ymin)表示标注框的左上角坐标,这四个值都是绝对值,下面将描述每个key对应value原创 2023-05-11 14:57:57 · 1274 阅读 · 0 评论 -
CenterFusion数据集nuScence_COCO格式
本文主要阐明centerfusion所使用的数据集格式,该格式是coco格式的一种变体,对比标准coco格式缺少了"info"和"licenses",增加了"videos"和"attributes",key的基本信息如下:CenterFusion数据格式详解train.json存放着所有训练集的标注数据,并且该文件只有一行,训练集和测试集数据格式相同,下面以训练集数据详细解读每一个key对应的value的详细内容原创 2023-05-11 13:56:33 · 1007 阅读 · 0 评论 -
Centerfusion算法环境配置及模型训练
本项目搭建环境如下:ubuntu20.04(非必须)nvidia驱动版本515.65.01(非必须)python3.7(必须)CUDA11.0(必须)cuDNN8.0(必须)pytorch1.7.1(必须)原创 2022-12-16 19:09:42 · 5351 阅读 · 73 评论 -
CenterFusion算法环境配置与demo运行 CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection
CenterFusion算法环境配置与demo运行1.论文简介2.环境配置1.论文简介论文链接:https://arxiv.org/pdf/2011.04841v1.pdf项目链接:https://github.com/mrnabati/CenterFusion该文作者信息:作者来自田纳西大学诺克斯维尔分校。激光雷达使用发射的激光测距进行环境感知,而雷达使用无线电发射进行探测。3D目标检测在自动驾驶领域应用广泛,而激光雷达(Lidar)和摄像头数据的融合常用来进行高精度的3D目标检测,但其仍原创 2020-11-25 10:45:18 · 9177 阅读 · 97 评论