核方法

核方法定义

定理:令 H \mathbb H H为核函数 κ \kappa κ对应的再生希尔伯特空间, ∣ ∣ h ∣ ∣ H ||h||_\mathbb H hH表示 H \mathbb H H空间中关于 h h h的范数,对于任意单调递增函数 Ω : [ 0 , ∞ ] ↦ R \Omega :[0,\infty] \mapsto \mathbb R Ω:[0,]R和任意非负损失函数 L : R ↦ [ 0. ∞ ] , L:\mathbb R \mapsto [0.\infty], L:R[0.],优化问题 m i n F ( h ) = Ω ( ∣ ∣ h ∣ ∣ H ) + L ( h ( x 1 ) , . . . , h ( x m ) ) minF(h)=\Omega(||h||_{\mathbb H})+L(h(x_1),...,h(x_m)) minF(h)=Ω(hH)+L(h(x1),...,h(xm))的解总是可以写成:
h ∗ ( x ) = ∑ i = 1 m α i κ ( x , x i ) h^*(x)=\sum_{i=1}^m\alpha_i\kappa(x,x_i) h(x)=i=1mαiκ(x,xi)
表示定理对损失函数没有限制,对于正则化项 Ω \Omega Ω仅要求单调递增,甚至不要求 Ω \Omega Ω是凸函数,这就意味着对于一般的损失函数和正则化项,优化问题的最优解 h ∗ ( x ) h^*(x) h(x)都可以表示为核函数 κ ( x , x i ) \kappa(x,x_i) κ(x,xi)的线性组合。

核函数的厉害之处从以上皆是就可以看出。

核函数背景

和函数的重要思想:非线性带来高维转换、对偶表示带来内积。

非线性带来高维转换
从线性分类的角度来看:以PLA和SVM为例,我们处理线性可分和不可分的问题时通常是用以下方法:

算法线性可分不是严格线性可分严格非线性
感知机算法PLAPocket Algorithm ϕ ( x ) + P L A \phi(x)+PLA ϕ(x)+PLA
支持向量机hard-margin SVMsoft-margin SVM ϕ \phi ϕ+hard-margin SVM(kernel SVM)

对于严格非线性问题的方法:可以假设通过某种映射 X ↦ Z X\mapsto Z XZ将输入控件映射到一个特征空间 Z Z Z,然后再 Z Z Z中执行线性分类。这就是非线性带来高维转换

对偶表示带来内积
在SVM中我们知道,解决凸优化问题我们依靠的就是最大间隔分类,再通过拉格朗日对偶性见简化为另一种对偶形式,但是对偶形式优化问题里包含一个内积的概念,也就是
m a x λ ∑ i = 1 N λ i − 1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j \underset \lambda{max}\sum_{i=1}^N\lambda_i-\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N\lambda_i\lambda_jy_iy_jx_i^Tx_j λmaxi=1Nλi21i=1Nj=1NλiλjyiyjxiTxj
s . t .    λ i ≥ 0 ,   ∑ i = 1 N λ i y i = 0 s.t.\space\space\lambda_i≥0,\space\sum_{i=1}^N\lambda_iy_i=0 s.t.  λi0, i=1Nλiyi=0
中的 x i T x j , x_i^Tx_j, xiTxj,而我们在计算的过程中必须要求出来这个内积。
如果是非线性问题,还需要拓展到高维空间,将 x i T x j x_i^Tx_j xiTxj转换成 ϕ ( x i ) T ϕ ( x j ) , \phi(x_i)^T\phi(x_j), ϕ(xi)Tϕ(xj)然而高维空间求出这个内积的可能性太小。
而核方法就可以很好的解决这个问题。

核函数定义: κ ( x , z ) = ϕ ( x ) T ϕ ( z ) , \kappa(x,z)=\phi(x)^T\phi(z), κ(x,z)=ϕ(x)Tϕ(z),其中 ϕ : X ↦ H ,   x 、 z ⊂ X \phi:X \mapsto \mathbb H,\space x、z\subset X ϕ:XH, xzX

正定核函数

定义:
κ : X × X ↦ R , 任 意 x , z ⊂ X , 有 κ ( x , z ) \kappa:X×X\mapsto \mathbb R,任意x,z\subset X,有\kappa(x,z) κ:X×XR,x,zX,κ(x,z)
如果 存 在 ϕ : X ↦ R    s . t .   κ ( x , z ) = &lt; ϕ ( x ) , ϕ ( z ) &gt; 存在\phi: X\mapsto \mathbb R\space\space s.t.\space\kappa(x,z)=&lt;\phi(x),\phi(z)&gt; ϕ:XR  s.t. κ(x,z)=<ϕ(x),ϕ(z)>,那么称 κ ( x , z ) \kappa(x,z) κ(x,z)是正定核函数。

而核函数 κ ( x , z ) \kappa(x,z) κ(x,z)必须满足正定性对称性
对称性: κ ( x , z ) = κ ( z , x ) \kappa(x,z)=\kappa(z,x) κ(x,z)=κ(z,x)
正定性:在 X X X中任取N个元素,对应的Gram matrix : κ = [ κ ( x i , x j ) ] :\kappa=[\kappa(x_i,x_j)] :κ=[κ(xi,xj)]是半正定的。

关于正定核函数为什么满足对称性和半正定性,有兴趣的可以查阅相关书籍了解一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值