图像去噪论文 Attention Guided CNN for Image Denoising

Attention-Guided CNN for Image Denoising

发表期刊 : Neural Networks 124 (2020) 117–129 https://doi.org/10.1016/j.neunet.2019.12.024
Paper and Code

image denoising 系列2:DnCNN图像去噪方法介绍

找paper搭配 Sci-Hub 食用更佳 (๑•̀ㅂ•́)و✧
Sci-Hub 实时更新 : https://tool.yovisun.com/scihub/
公益科研通文献求助:https://www.ablesci.com/

Abstract: 提出注意力导向的去噪卷积神经网络(Attention-guided Denoising Net, ADNet),主要包括稀疏块(Sparse Block),特征增强块(Feature Enhancement Block),注意力块(Attention Block)和重构块(Reconstruction Block)图像降噪。

SB通过使用扩张卷积和普通卷积来去除噪声,从而在性能和效率之间进行权衡。
FEB通过很长的路径集成了全局和局部特征信息,以增强去噪模型的表达能力。
AB用于精细提取隐藏在复杂背景中的噪声信息,对于复杂的噪点图像(真实噪点图像)和盲去噪非常有效。此外,FEB与AB集成在一起,可提高效率并降低训练降噪模型的复杂度。
RB旨在通过获得的噪声映射和给定的噪声图像来构造清晰图像。
ADNet在三个任务(合成、真实的噪点图像以及盲降噪)中均表现出色。

具体而言,ADNET的网络架构的设计在图像去噪的性能和效率之间遵循。为了提高性能,使用三个块(即,SB,FEB和AB)来消除不同观点的噪声。 SB使用扩张和标准卷积来扩大接受场大小以改善去噪性能。 FEB通过长路径集成了ADNET的全局和本地特征,以增强图像去噪的表达能力。 AB可以快速捕捉隐藏在复杂背景中的关键嘈杂功能,以实现复杂的嘈杂任务,例如真正的嘈杂图像和盲目的去噪。为了提高效率,有三个阶段:首先,SB有助于ADNet获取浅网络架构。其次,FEB压缩了第十六层的输出为C。第三,AB使用1×1的卷积滤波器来减少参数的数量。

Contributions:
(1)提出了由扩张卷积和普通卷积组成的SB,用于减小深度以提高去噪性能和效率。
(2)FEB使用长路径融合来自浅层和深层的信息,增强去噪模型的表达能力。
(3)AB用于从给定的噪点图像中深度挖掘隐藏在复杂背景中的噪声信息,例如真实的噪点图像和盲降噪。
(4)FEB与AB集成在一起,可以提高效率并降低训练降噪模型的复杂度。
(5)在六个基准数据集上,ADNet在合成和真实噪点图像以及盲降噪方面均优于最新技术(2020)。

17层的ADNet由四个块组成,分别是SB,FEB,AB和RB。 12层稀疏块SB用于增强图像去噪的性能和效率。
Fig. 1 图 1
loss function:MSE 均方差和clean-noise图像对
在这里插入图片描述

SB:
12层SB包括两种类型:dilated Conv+BN+ReLU和Conv+BN+ReLU。
dilated Conv+BN+ReLU表示扩张率为2的卷积,BN 和激活函数ReLU 是相连的。
另一种是 Conv,BN和ReLU 相连。
dilated Conv+BN+ReLU位于SB的第二、第五、第九和第十二层(图1中紫色),这些层可以视为高能点。
Conv+BN+ReLU在第一、第三、第四、第六、第七、第八、第十和第十一层(图1中绿色),为低能点。

1–12层的卷积滤波器大小为3 × 3。第一层的输入是c:输入噪声图像的通道数。2–12层的输入和输出为64。几个高能量点和几个低能量点的组合可以认为是稀疏性。

稀疏块的实现转换为公式 6,D代表扩张卷积的函数。R和B分别代表ReLU和BN。CBR是Conv+BN+ReLU的函数。根据前面的描述,用下面的等式来表示SB。
O S B = R ( B ( D ( C B R ( C B R ( R ( B ( D ( C B R ( C B R ( C B R ( R ( B ( D ( C B R ( C B R ( R ( B ( D ( C B R ( I N ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ( 6 ) O^{SB}= R(B(D(CBR(CBR(R(B(D(CBR(CBR(CBR(R(B(D(CBR(CBR(R(B(D (CBR(I^N)))))))))))))))))))) (6) OSB=R(B(D(CBR(CBR(R(B(D(CBR(CBR(CBR(R(B(D(CBR(CBR(R(B(D(CBR(IN))))))))))))))))))))6
FEB:(深层网络可能会受到浅层的弱化影响)
FEB通过一条长路径充分利用全局和局部特征来挖掘更鲁棒的特征,这与SB在处理给定噪声图像方面是互补的。

4层FEB由三种类型组成:Conv+BN+ReLU、Conv和Tanh,其中Tanh是activate function。Conv+BN+ReLU在13–15层,filter size=64×3×3×64。Conv用于第16层,ilter size=64×3×3×c。第17层使用concatenation operation来融合输入的噪声图像和第16层的输出,以增强去噪模型的表示能力。

因此,最终输出尺寸为64×3×3× 2c。此外,Tanh用于将获得的特征转换成非线性。该过程如公式7 描述解释。 O F E B = T ( C a t ( C ( C B R ( C B R ( C B R ( O S B ) ) ) ) , I N ) ) ( 7 ) O^{FEB}= T(Cat(C(CBR(CBR(CBR(O^{SB})))), I^N)) (7) OFEB=T(Cat(C(CBR(CBR(CBR(OSB)))),IN))7其中C、Cat和T分别是卷积、级联和Tanh的函数。在图1中,Cat用于表示连接的功能。此外,OFEB也用于AB。

AB:(复杂的背景很容易隐藏图像和视频应用的特征)
AB利用当前阶段指导前一阶段学习噪声信息,对于未知噪声图像,即盲去噪和真实噪声图像非常有用。

1层AB仅包括一个Conv,其大小为2c × 1 × 1 × c,其中c是给定损坏图像的通道数。

AB利用以下两个步骤来实现注意机制。第一步使用来自第17层的大小为1 × 1的卷积将获得的特征压缩成向量作为调整前一阶段的权重,这也可以提高去噪效率。

第二步利用获得的权重乘以第16层的输出,以提取更显著的噪声特征。其过程可以转换为以下公式。
在这里插入图片描述
Training datasets:
训练数据集使用伯克利分割数据集(BSD)的400幅大小为180 × 180的图像和滑铁卢勘探数据库的3,859幅图像来训练高斯合成去噪模型。

图像的不同区域包含不同的详细信息,因此将训练噪声图像分成大小为50 × 50的1,348,480个小块,有助于促进更鲁棒的特征并提高训练去噪模型的效率;

缺点是噪音在现实世界中是变化的和复杂的。基于这个原因,使用来自基准数据集(徐,李,梁,张,&张,2018)的100幅尺寸为512 × 512的真实噪声图像来训练真实噪声去噪模型。为了加快训练速度,100幅真实噪声图像也被分成211,600个大小为50 × 50的小块。

此外,上面的每个训练图像从八种方式中随机旋转一种方式:原始图像,90♀,180♀,270♀,原始图像自身水平翻转,90♀,自身水平翻转,180♀,自身水平翻转,270♀,自身水平翻转。

测试数据集:
通过6个数据集,即BSD68,Set12,CBSD68 ,Kodak24,McMaster和cc ,分别由68,12,68,24,18和15幅图像组成,来评估ADNet的去噪性能。BSD68和Set12是灰色图像。其他数据集是彩色图像。BSD68和CBSD68的场景是一样的。真实噪声的cc数据集是从三个不同的相机采集的,每个真实噪声图像的大小是512 × 512。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 10
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
Attention-guided CNN for image denoising》是一种用于图像去噪神经网络模型。它基于卷积神经网络CNN)的基本架构,但引入了注意力机制来提高去噪的效果。 在传统的CNN中,输入图像经过一系列卷积和池化操作,通过多个卷积层和全连接层进行特征提取和分类。然而,在图像去噪任务中,图像中不同区域的噪声水平可能不同,因此传统的CNN在对整个图像进行处理时可能无法有效地去噪。 为了解决这个问题,注意力机制被引入到CNN中。注意力机制可以将网络的注意力集中在图像的不同区域,以便更有针对性地去噪。该模型通过引入注意力模块,在每个卷积层之后对特征图进行处理,以增强重要区域的特征表示。这种注意力机制能够在去噪任务中更好地保留图像的细节和边缘,提高去噪效果。 具体来说,注意力模块通过学习图像的空间注意力和通道注意力来选择性地加权特征图。空间注意力用于选择特征图中的重要区域,而通道注意力用于选择特征图中的重要特征通道。通过这种方式,网络可以更加自适应地选择图像中重要的特征表示,从而更好地去除噪声。 实验证明,使用注意力机制的CNN模型在图像去噪任务上具有更好的性能。它在不同的噪声水平和噪声类型下都能够有效地去噪,并且能够保持图像的细节和结构。因此,这个注意力引导的CNN模型在图像去噪任务中具有一定的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yddcs

你的鼓励--创作的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值