Adversarially Occluded Samples for Person Re-identification阅读笔记

Adversarially Occluded Samples for Person Re-identification

Houjing Huang,Dangwei Li ,Zhang Zhang,Xiaotang Chen,Kaiqi Huang 2018 CVPR

1.Motivation

通过引入Adversarially Occluded Samples来扩增训练数据的变化。这些样本不仅是有意义的,类似真实场景的遮挡,而且还是有效的,能帮助模型跳出局部最优。

2. 介绍

在这里插入图片描述

3. 方法

简言之就是先用图像训练一个IDE模型,然后将图像遮挡一个patch送给网络识别,如果识别概率骤降,就说明这一块是对于分类至关重要的部分,于是就将这个区域遮挡,对训练好的IDE模型进行微调,直到在遮挡这个patch时还能很好的识别该图像。而这个patch以滑动窗口的形式在图像上重叠滑动,而且可能不止一个区域对于识别图像至关重要,可能有好几个区域都重要。模型框架为:
在这里插入图片描述
整个过程很好理解,损失用的就是常规IDE模型损失。第二阶段的滑动窗口( d ∗ d d*d dd像素的窗口)就是每经过一个像素就用 d ∗ d d*d dd的窗口遮挡这一区域,然后窗口以 s w , s h s_w,s_h sw,sh的stride滑动。
在这里插入图片描述
在这里插入图片描述
上图ab除了原图外,其余5个图是分别独立训练了五个模型后,分别找到的对分类影响最大的区域,这些区域都是相同的,说明了模型的设计是合理的。而c-g的第一行是原图,第二行是对分类影响最大的区域,而第三行是用本文的方法后得到的结果,已不再受到这些区域的影响。
一般,可以选择最影响分类的那个patch进行遮挡,然后在第三阶段训练,即Hard-1,但这在影响分类的区域很大(图3f)或不止一个影响分类的区域(图3g)时是次优的,于是作者提出原识别概率为p,遮挡区域i后识别概率为 p i p_i pi,然后利用下式得:
在这里插入图片描述
再norm为下面的分布:
在这里插入图片描述
其中 N p o s N_pos Npos是滑动窗口的数量。称为Sampling。

4. 实验

4.1. 实验细节

在这里插入图片描述
在这里插入图片描述

4.2. 示例

在这里插入图片描述

4.3. 参数选择

在这里插入图片描述
在这里插入图片描述
遮挡后预测概率下降量归一化后的
在这里插入图片描述
大于0.5的区域就用于第三阶段的训练?

4.4. 消融

在这里插入图片描述

4.5. 可视化

在这里插入图片描述
attention变广了,激活变大了,易于分类的区域变多了,而不是只依赖于原来的那几个固定区域

4.6. 和SOTA比较

在这里插入图片描述
性能不算很高
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值