SSG: Self-similarity Grouping阅读总结

Self-similarityGrouping: ASimpleUnsupervisedCrossDomainAdaptation ApproachforPersonRe-identification
paper: arxiv
code: github
author: Yang Fu, Yunchao Wei et al. ICCV 2019

Why?

目前做跨域ReID无非以下几点:

  • UDA针对闭集,但ReID是开集
  • 目标域transfer到源域风格,基于GAN,但什么是风格?相机?衣服?相机当作风格确实获得了很大的性能提升,如ZZ大佬的CamStyle,HHL, ECN以及ECN+GCN
  • 目标域和源域都transfer到一个共同的空间中,也就是学习域不变性特征,当然也可以辅助以域特定特征,这方面比如ARN那篇论文,但这篇论文我复现的时候没有达到作者报告的那个精度。
  • 聚类打伪标签,显然这是一个没有充分开发的方向
  • 其他的论文大多也都是以上方法的一种,比如TJAIDL基于属性做跨域,算是学习了属性这一不变的特征,但也存在问题。因为ReID目前的属性数据集都是基于ID打的,也就是一个ID打了某属性,他的所有图像都会打上相同的属性,但这也存在不合理之处。比如,某个ID打了背包属性,在背面照中可以看到这个信息,但正面照中基本看不到背包(基本就只能看到背包带),甚至他把书包给同学带走(即使目前ReID考虑的是短时间段,但也都是几个小时的视频,足够完成这个过程),但却强制让网络学习他背了书包,这显然不是一个合理的现象。还有一些也都类似。
    于是作者从打伪标签下手。
How?

先上图:
在这里插入图片描述

首先依然是全局特征+局部特征(上半身+下半身);然后对于上面的CNN Model,就是先在源域训练,然后对目标域图像提特征(每张图像3个),特征经过DBSCAN聚类成Ng类(DBSCAN不需要给目标类数,这个Ng是自己聚出来的),而且注意三个特征group分别聚类,互不干扰。聚好的结果打个伪标签,然后就是有监督了,用来微调CNN Model,然后在聚类打伪标签和Fine-tune之间循环迭代。这就是SSG。

作者还给了图2:
在这里插入图片描述
但这张图好像除了给了Fine-tune时损失计算方式外,没有比图1多余的信息.(源域训练时就是softmax+triplet,fine-tune时没有用softmax,可能是怕直接利用打的伪标签不准(IDE基于强ID标签,triplet这种则是弱ID标签)。

方法似乎就完了。但作者又给了一个打标签的方法:
就是先基于聚类得到Ng类,然后再在每类中随机抽一个样本,人工给他打上标签,再直接放弃之前聚类算法打好的标签,每个样本与这Ng个样本(组成Xg)计算距离(按照ZZ的rerank中的那个k互编码来算,原距离和雅可比距离的融合),然后将样本分配和其最近的人工打标签的那个数据一样的标签,是一种弱监督方法。但:

可能由于随机抽取Xg时抽到了聚类边界,这多抽几次就可以了,因为中间的占多数。注意:可能最后得到的不一定时Ng类了,可能少于Ng类(抽取的Ng个样本有相同人打的ID,就会发生)。

根据作者的实验,貌似并没有遇到这种情况,可能也比较少见,所以对性能可能也不会有很大影响。这就是SSG+。

将SSG和SSG+联合,就是SSG++。而SSG+中从Ng个类中,每类抽一个样本打标签,利用了聚类得到的信息,增加了ID的多样性,效果会比SSG更好(实验得出,而SSG就是在整个目标域上随机找Ng个样本打标签)

Loss?
监督阶段

在这里插入图片描述
最常见的那个,没什么好说的

Fine-tune阶段

SSG:
在这里插入图片描述
SSG+:
在这里插入图片描述
SSG++:
在这里插入图片描述

作者还给了聚类打标签+手工打标签过程联合训练过程:
在这里插入图片描述
可以看到,聚类打为标签时还有很多样本没有利用到(红圈圈出来的黑色样本,当然Kmens不会,但要指定聚类数,不够合理)。而人工打标签解决了这一问题,且代价比较低,不然就需要既不会遗漏样本没聚类到,又不需要指定聚类类数的聚类算法了(不知道有没有)。

实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
性能相当强

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值