pandas学习笔记—merge()函数详解

112 篇文章 7 订阅
104 篇文章 4 订阅

1、merge()中的常用参数

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'))
  • left: 拼接的左侧DataFrame对象
  • right: 拼接的右侧DataFrame对象
  • on: 指定两个dataframe按某一列进行连接,该列必须同时出现在两个dataframe中。
    如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。
  • left_on:左侧DataFrame中用作连接键的列。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
  • right_on: 右侧DataFrame中用作连接键的列。可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
  • left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键的列。
    对于具有MultiIndex(分层)的DataFrame,级别数必须与右侧DataFrame中的连接键数相匹配。
  • right_index: 与left_index功能相似。
  • how: ‘left’, ‘right’, ‘outer’或‘inner’之一。
    默认inner。inner是取两个dataframe的连接键列中元素的交集,outer取其并集,如果其中一个dataframe中的连接键列中不含有某元素,则该元素对应的这行数据中的其它列用NAN填充。
  • sort: 按字典顺序通过连接键对结果DataFrame进行排序。 默认为True,设置为False将在很多情况下显着提高性能。
  • suffixes: 用于重叠列的字符串后缀元组。 默认为(‘x’,’ y’)。也可手动指定:suffixes=(“df1”,“df2”)

2、举例

列几个例子细细品味:

import pandas as pd
dataDf1=pd.DataFrame({'列1_left':['a','b','b','c'],
                     '列2_left':[1,2,2,3]})
dataDf2=pd.DataFrame({'列1_right':['b','c','c','d'],
                     '列2_right':[2,3,3,4]})
print(dataDf1)
print(dataDf2)

输出:
在这里插入图片描述

dataLfDf=pd.merge(dataDf1,dataDf2, left_on='列1_left',right_on='列1_right') #默认how='inner'
dataLfDf

在这里插入图片描述

dataLfDf=pd.merge(dataDf1,dataDf2, how='outer',left_on='列1_left',right_on='列1_right') 
dataLfDf

在这里插入图片描述

dataLfDf=pd.merge(dataDf1,dataDf2, how='right',left_on='列1_left',right_on='列1_right') 
dataLfDf

在这里插入图片描述

import pandas as pd
dataDf1=pd.DataFrame({'key':['a','b','b','c'],
                     '列2_left':[1,2,2,3]})
dataDf2=pd.DataFrame({'key':['b','c','c','d'],
                     '列2_right':[2,3,3,4]})
print(dataDf1)
print(dataDf2)

在这里插入图片描述

dataLfDf=pd.merge(dataDf1,dataDf2, how='outer',on='key') 
dataLfDf

在这里插入图片描述

dataLfDf=pd.merge(dataDf1,dataDf2, how='left',on='key') 
dataLfDf

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值