TensorFlow实现卷积

本文详细介绍如何使用TensorFlow的tf.nn.conv2d函数进行卷积操作,通过具体实例展示了滤波器、步长和填充方式的应用,并结合tf.nn.bias_add函数添加偏置项,最后部署ReLU激活函数实现卷积层的构建。
摘要由CSDN通过智能技术生成
  • tf.nn.conv2d()函数来计算卷积,weights作为滤波器,[1,2,2,1]作为strides
  • input_image维度使用一个单独的stride参数,[batch,input_height,input_width,input_channels]
  • input_height和input_width strides表示滤波器在input上移动的步长。在input之后,设置了一个5*5,stride为2的滤波器
  • tf.nn.bias_add()函数对矩阵的最后一维加了偏置项
# 输出深度
k_output = 64
# 图片属性
image_width = 10
image_height = 10
color_channels = 3
# 卷积滤波器
filter_size_width = 5
filter_size_height = 5
# 输入图片
input_image = tf.placeholder(tf.float32,shape = [None,image_height,image_width,color_channels])
weight = tf.Variable(tf.truncated_normal([filter_size_height,filter_size_width,color_channels,k_output]))
bias = tf.Variable(tf.zeros(k_output))
# 部署卷积
conv_layer = tf.nn.conv2d(input_image,weight,strides=[1,2,2,1],padding="SAME")
# 添加偏置项
conv_layer = tf.nn.bias_add(conv_layer,bias)
# 部署激活函数
conv_layer = tf.nn.relu(conv_layer)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值