深度学习笔记10/21——逻辑回归(logistic regression)

逻辑回归中的损失函数——loss function

        损失函数是量化预测误差的表达式。 可用需要进行设定来对输出值\hat{y}进行检测,这里的\hat{y},y分别指预测输出的y和样例的y

        那么如何进行设定呢?现在假设有一组样例   Given\begin{Bmatrix} (x^{(1)},y^{(1)}) & ... &x^{(m),y^{(m)}} \end{Bmatrix} ,通过sigmoid函数可以计算出参数:样本权重W^T和偏置量b,从而用输入的X^T=\begin{pmatrix} x^1 &... &x^m \end{pmatrix}来预测y,得出\hat{Y}=\begin{pmatrix} \hat(y^1) &... &\hat(y^m) \end{pmatrix}

因此在得出结果后我们需要一个函数来检测得出的结果和样本中的样例的差距有多大,并且需要将得出的结果不断的调整向样例靠拢,所以可以轻易地想到的函数是:

d_1=\left | \hat{y}-y \right |

d_2=\frac{1}{2}(\hat{y}-y)^2

但是如果使用这个函数,那么可以在其定义域中找到不止一个极值点,因此不好判断最优选择,所以我么需要一个更加平滑的函数,因此可以构建出一个新的函数:

L(\hat{y},y)=-(ylog\hat{y}+(1-y)log(1-\hat{y}))

或者交叉熵函数:
-\sum_{i=1}^{n}y^{(i)}*log\hat{y_i}

        原理是因为拉斐拉效应:当y=1时,\hat{y}就必须尽可能的增大,因为在sigmoid函数中y的值域上界就是1,所以\hat{y}无线趋近于1;当y=0时相反趋近于0。因此,这个函数更适于作为损失函数。

逻辑回归中的代价函数——cost function

        检测优化组的整体运行情况,反应的是参数成本

J(W,b)=\frac{1}{m}\sum_{i=1}^{m}L(x^{(i)},y^{(i)})

因此在优化逻辑回归模型是需要找参数W,和b来缩小代价函数J(W,b)的整体成本

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zack Wesson

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值