深度学习笔记10/19——Introduction

——什么是神经网络

ReLU——rectified linear unit 修正线性单元


神经网络就是由这些单独完成将输入转化为输出的神经元组成的,下图是由不同的房价自变量预测房价的图示,神经网络的神奇之处在于只需要输入一个X(特征)就能让程序自发的完成中间步骤从而导出price

每个内部的节点叫做隐藏节点,输入特征的层叫输入层

监督学习(supervised learning):使用标记
数据集来训练算法,以便对数据进行分类或准确预测结果。

CNN:卷积神经网络 通常用于图像领域,自动驾驶领域

RNN:循环神经网络 通常用语序列数据的处理 比如音频,语言

同时监督学习也可用于结构化数据(有固定格式的数据,比如表格)和非结构化数据(图片,音频,文字)处理

——为什么深度学习会兴起

  1. DATA:数据量巨大,数据收集能力飞速发展,规模一直在推动深度学习的进步(Scale has been driving deep learning progress),不仅指神经网络的规模,也指数据的规模。                     *  m表示训练规模,只有在训练规模非常大时,深度学习的能力才比其他方法领先
  2. Computation:CPU,GPU的发展有助于加快迭代速度,使得研究人员的模型迭代速度更快,从而使他们产生更多想法。
  3. Algorithms:算法方面的创新都是为了让神经网络运行更快。

——二分分类(binary classification)

目标:

        训练出一个训练器,它以图片的特征向量x输入,预测输出的结果为y——只能是1或者0,来表示是或者否。

        分类算法是有监督的,事先知道样本所属的真是类别,用某种算法挖掘样本类别划分的内在规律,实现对新样本的类别划分。

符号约定:

       (x,y)表示一个单独的样本,x是n维的向量,y表示二分类的结果。如(x_2,y_2)表示样本2。

        小写字母m表示训练样本的个数,m_train表示训练集个数,m_test表示测试集的个数。

        定义一个n*m矩阵X表示训练集,其中训练样本x1, x2, x3...是该训练集的列向量。矩阵的列数就是样本个数m,矩阵的行数记为n。Python中输出该矩阵的维度的命令是X.shape = (nx, m)。这就是如何将输入用矩阵表示。

        定义一个1*m矩阵Y,将输出y1, y2, y3...作为矩阵的列向量按行优先排列,列数代表样本个数m。Python中输出该矩阵的维度的命令是Y.shape = (1, m)。

Logistic Regression 逻辑回归

        用在监督学习,输出y标签是0或者1这类二分问题中,是一种广义的线性回归分析模型。

sigmoid函数(逻辑分布的概率函数)

sigmoid函数的来源:

  将0-1分布中x的概率函数化为指数族分布型再进行同构

得到以下等式:

\theta =ln\frac{\gamma }{1-\gamma } = W^{T}X

\phi (Y) = -ln(1-\gamma )

A(\theta ) = -ln(1-\gamma )

然后解出\gamma =\frac{1}{1+e^{-W^{T}x}},其中\gamma =E(y)即是0-1分布中y输出为1的数学期望,这也就是二分分类的结果,非正即负,也即sigmoid函数。

然后取反函数可以得出W^{T}X=g(E(y))=g(\gamma )=ln\frac{\gamma}{1-\gamma}, 此为对数几率函数

sigmoid函数的性质:

y=Sigmoid(x)=\frac{1}{1+e^{-x}}

  • 当x趋向于正无穷,y趋向于1,反之趋向于0
  • sigmoid(x)+sigmoid(-x)=1
  • 函数图像关于点(0,1/2)中心对称
  • Sigmoid函数的导数为:{Sigmoid(x)}'=Sigmoid(x)[1-Sigmoid(x)]
sigmoid函数在逻辑回归中的作用

  因为普通的线性回归会导致概率P大于1或者小于0,因此需要找到一个上界为1下界为0的函数来表示概率。所以有

X^{T}=\begin{pmatrix} x_{1} & x_{2} & ... & x_{n} \end{pmatrix}

W^{T}=\begin{pmatrix} W_{1} & W_{2} & ... & W_{n} \end{pmatrix}

其中W为样本权重,因此Sigmoid(W^{T}X_{1})=E(y_{1}),以此类推可以求得Y^{T}=\begin{pmatrix} y_{1} &y_{2} &... &y_{n} \end{pmatrix}——即样本为正的概率的列向量集合

Sigmoid(W^{T}X)中需要在自变量中加入未知参数偏置量b,使得概率\gamma=Sigmoid(W^{T}X+b).

因此在这个样本数据集中未知参数有N+1个:\begin{pmatrix} b &W_1 &... &W_n \end{pmatrix},这些未知参数是共享的。

总体的流程图就是:

和我们的神经元是类似的,其中Sigmoid函数被称为激活函数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zack Wesson

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值