scipy 线性拟合 相关系数

本文介绍了如何使用scipy库在Python中进行线性数据的拟合,包括计算线性拟合的系数,并探讨了如何获取线性相关系数,以评估数据的关联性。
摘要由CSDN通过智能技术生成

原文链接: scipy 线性拟合 相关系数

上一篇: scipy 最小二成法拟合曲线方程

下一篇: TensorFlow 常见激活函数

使用scipy 拟合线性数据,求系数和线性相关系数

import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
import scipy.stats
from sklearn.metrics import r2_score

size = 1000
x = np.linspace(0, 10, size)
y = 2 * x + 3 + np.random.normal(0, 1, size)
slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x, y)
y2 = slope * x + intercept
# 斜率, 截距,相关系数,假设检验,估计梯度的标准差
print(
    slope, intercept, r_value, p_value, std_err
)

# 相关系数
print(
    r2_score(y2, y),
    r2_score(y, y2),
)

结果

1.9968120750661635 3.031230824858268 0.9857951745943679 0.0 0.01076887686718046
0.9709733460640334 0.9717921262535413
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值