【神经网络】05 - 全连接层

05 - 全连接层

概念

nn.Linear在PyTorch中是用于创建全连接层(全连接神经网络层)的类。全连接层也被称为密集连接层或者全连接神经网络层,是深度学习中常用的一种网络层类型。

全连接层的作用是将上一层的所有节点都连接到当前层的每个节点,这样每个节点都与上一层的所有节点相连,形成了完全连接的网络结构。这种结构可以学习到输入数据之间的复杂非线性关系,从而提高模型的表达能力。

img

在PyTorch中,使用nn.Linear可以方便地创建全连接层,指定输入特征的维度和输出特征的维度。例如,下面是一个创建全连接层的示例:

import torch
import torch.nn as nn

# 定义一个全连接层,输入特征维度为10,输出特征维度为5
linear_layer = nn.Linear(in_features=10, out_features=5)

# 打印全连接层的权重和偏置项
print("全连接层的权重:")
print(linear_layer.weight)
print("全连接层的偏置项:"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值