05 - 全连接层
概念
nn.Linear
在PyTorch中是用于创建全连接层(全连接神经网络层)的类。全连接层也被称为密集连接层或者全连接神经网络层,是深度学习中常用的一种网络层类型。
全连接层的作用是将上一层的所有节点都连接到当前层的每个节点,这样每个节点都与上一层的所有节点相连,形成了完全连接的网络结构。这种结构可以学习到输入数据之间的复杂非线性关系,从而提高模型的表达能力。
在PyTorch中,使用nn.Linear
可以方便地创建全连接层,指定输入特征的维度和输出特征的维度。例如,下面是一个创建全连接层的示例:
import torch
import torch.nn as nn
# 定义一个全连接层,输入特征维度为10,输出特征维度为5
linear_layer = nn.Linear(in_features=10, out_features=5)
# 打印全连接层的权重和偏置项
print("全连接层的权重:")
print(linear_layer.weight)
print("全连接层的偏置项:"