GEE:快速下载2020年土地利用/覆盖数据(10米分辨率)

数据集: ESA WorldCover 10m v100
数据说明: 该产品提供了基于Sentinel-1和Sentinel-2数据的2020年10米分辨率的全球土地覆盖地图。WorldCover产品有11种土地覆盖类别,是在ESA WorldCover项目框架内生成的,该项目是欧洲航天局第5个地球观测信封计划(EOEP-5)的一部分。
源代码链接: https://code.earthengine.google.com/a21637bdf6f94fe68d9eb7928ac91695?noload=true
在这里插入图片描述

//导入矢量边界,然后直接运行
var ROI = table

//导入数据
var Landcover_dataset = ee.ImageCollection("ESA/WorldCover/v100").first()

//按试验区掩膜提取
var Landcover = Landcover_dataset.clip(ROI)

//土地覆盖数据对应颜色&标签
// 10  #006400 Trees 
// 20  #ffbb22 Shrubland 
// 30  #ffff4c Grassland 
// 40  #f096ff Cropland 
// 50  #fa0000 Built-up 
// 60  #b4b4b4 Barren / sparse vegetation 
// 70  #f0f0f0 Snow and ice 
// 80  #0064c8 Open water 
// 90  #0096a0 Herbaceous wetland 
// 95  #00cf75 Mangroves 
// 100  #fae6a0 Moss and lichen 

//可视化参数
var visualization = {
  bands: ['Map'],
  palette:['#006400','#ffbb22','#ffff4c',
            '#f096ff','#fa0000','#b4b4b4',
            '#f0f0f0','#0064c8','#0096a0',
            '#00cf75','#fae6a0'],
};

Map.centerObject(ROI,5);

Map.addLayer(ROI,{},'ROI');

Map.addLayer(Landcover, visualization, "Landcover");

//数据下载
Export.image.toDrive({
      image: Landcover,
      description: 'Landcover',
      region: ROI,
      maxPixels: 1e13,
      folder: 'Landcover'
    })
### 获取10分辨率土地利用类型数据 对于10分辨率土地利用类型数据,可以访问特定地区的下载链接来获取所需资源[^1]。例如: - **贵州省** 10m分辨率土地利用数据 - **福建省** 10m分辨率土地利用数据 - **北京市** 10m分辨率土地利用数据 - **安徽省** 10m分辨率土地利用数据 这些地区的数据已经经过处理并提供给用户使用。 为了有效管理和应用这类高分辨率空间数据,在实际操作过程中可能需要考虑计算机性能以及存储容量等因素。考虑到整个过程涉及大量计算和处理工作,建议采用高性能硬件设备以提高效率。 如果计划对多个省份或更大范围内的数据进行分析,则需注意不同区域间可能存在坐标系差异等问题,因此在预处理阶段应统一投影转换至相同标准下再开展后续研究工作。 ```python import rasterio as rio from osgeo import gdal, ogr, osr def reproject_raster(input_file, output_file, dst_crs='EPSG:4326'): with rio.open(input_file) as src: transform, width, height = calculate_default_transform( src.crs, dst_crs, src.width, src.height, *src.bounds) kwargs = src.meta.copy() kwargs.update({ 'crs': dst_crs, 'transform': transform, 'width': width, 'height': height }) with rio.open(output_file, 'w', **kwargs) as dst: for i in range(1, src.count + 1): reproject( source=rio.band(src, i), destination=rio.band(dst, i), src_transform=src.transform, src_crs=src.crs, dst_transform=transform, dst_crs=dst_crs, resampling=Resampling.nearest) reproject_raster('input.tif', 'output_reprojected.tif') ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值