根据GEE(Google Earth Engine)的官方文档:。
- 当请求失败并显示“超出用户内存限制”时,这意味着 Earth Engine 无法在允许的内存占用范围内计算答案。EE 计算平台具有有限的可用 RAM,为确保系统稳定,每个请求只能使用一定数量的内存。可用内存的最大量取决于请求的类型(例如,批处理任务比地图瓦片拥有更多的内存),但这些限制是系统范围的。如需帮助解决内存错误,请参阅调试指南。
一、怎么优化代码和数据
-
分步运算:比如将两个步骤分成两个代码,第一个步骤的结果保存在Assets里面,第二个步骤调用Assets里面的结果继续进行后续操作。
-
控制处理范围和分辨率:限制处理范围和分辨率,避免处理过大或过复杂的数据,从而减少内存需求。可以选择裁剪或分块处理大规模数据,以降低内存使用。
-
减小处理数据的大小:在进行地理信息处理时,尽量减小处理数据的大小,例如通过裁剪、压缩或降低分辨率来减小影像数据的大小,以减少内存使用。
-
优化算法和代码:通过优化处理算法和代码,减少不必要的内存占用。例如,使用更高效的算法和数据结构,减少中间结果的存储和传输,以降低内存使用。
-
关闭不必要的图层和工具:在GEE平台上,可以同时加载多个图层和使用多个工具,但这也会增加内存使用。因此,当不需要某些图层或工具时,可以关闭它们以释放内存资源。将不用的影像或者影像集合赋值null。
-
使用云端数据:GEE平台提供了许多云端数据集,这些数据集存储在谷歌云端,可以直接在GEE平台上访问和处理,无需下载和上传数据。使用云端数据可以减少本地内存使用。
二、优化代码示例
在Google Earth Engine (GEE) 平台上,可以通过优化算法和代码来减少内存使用和提高处理效率。以下是一些优化算法和代码的示例:
- 减少数据处理的范围:对于大规模遥感影像数据,可以通过裁剪或者筛选感兴趣的区域,仅处理需要的数据范围,从而减少内存使用。例如,在进行 NDVI(归一化植被指数)计算时,可以裁剪只处理感兴趣的地理区域,而不是整个影像。
// 示例:裁剪影像到感兴趣的区域
var roi = ee.Geometry.Rectangle([xmin, ymin, xmax, ymax]);
var clippedImage = image.clip(roi);
- 降低数据分辨率:对于高分辨率的遥感影像数据,可以降低数据的分辨率,从而减少内存使用。例如,在进行影像分类时,可以将影像数据降采样为较低的分辨率,从而减少像素数量。
// 示例:将影像降采样为较低的分辨率
var downsampledImage = image.resample('bicubic').reproject({
'crs': image.projection(),
'scale': 30
});
- 使用逐像素操作:在进行像素级的操作时,可以使用逐像素操作,而不是将整个图像加载到内存中。例如,在进行像素级运算时,可以使用 expression() 函数,该函数会在计算时逐像素进行,并且可以节省内存。
// 示例:使用逐像素操作进行NDVI计算
var ndvi = image.expression('(NIR - RED) / (NIR + RED)', {
'NIR': image.select('B8'),
'RED': image.select('B4')
}).rename('NDVI');
- 避免不必要的数据复制:在进行图像操作时,尽量避免不必要的数据复制,从而减少内存使用。例如,在对图像进行计算时,使用 add(), subtract(), multiply(), divide() 等方法时,可以通过 inPlace() 参数将结果直接覆盖到原始图像,从而避免创建新的图像副本。
// 示例:使用 inPlace() 参数避免创建新的图像副本
var result = image1.add(image2, {inPlace: true});
- 限制数据加载和保存:在进行大规模数据处理时,尽量避免不必要的数据加载和保存,以减少内存和存储资源的使用。例如,在读取和保存图像时,可以使用 clip()、mask()、select() 等方法来限制读取和保存的数据范围和属性,从而减少数据加载和存储的开销。
// 示例:使用 clip() 和 select() 方法限制数据加载和保存
var clippedImage = image.clip(roi).select(['B4', 'B3', 'B2']);
Export.image.toDrive({
image: clippedImage,
description: 'clipped_image',
folder: 'GEE_export',
scale: 30,
region: roi,
});
- 使用缓存和批处理:在进行大规模数据处理时,可以使用缓存和批处理技术,以减少重复计算和优化处理流程。例如,在进行时间序列分析时,可以将中间结果缓存起来,以便后续的计算可以直接使用缓存的结果,而不需要重新计算。
// 示例:使用缓存优化时间序列分析
var ndviTimeSeries = imageCollection.map(function(image) {
var ndvi = image.expression('(NIR - RED) / (NIR + RED)', {
'NIR': image.select('B8'),
'RED': image.select('B4')
}).rename('NDVI');
return ndvi.set('system:time_start', image.get('system:time_start'));
}).cache();
- 使用算法和数据结构优化:在进行复杂的计算时,可以使用高效的算法和数据结构来减少计算复杂度和内存使用。例如,在进行矩阵计算时,可以使用矩阵运算库,如 ee.Array(),以进行高效的矩阵计算。
// 示例:使用 ee.Array() 进行矩阵计算
var array1 = ee.Array([[1, 2, 3], [4, 5, 6]]);
var array2 = ee.Array([[7, 8, 9], [10, 11, 12]]);
var arraySum = array1.add(array2);
以上只是一些优化算法和代码的示例,实际优化的方法和技巧可能因具体问题而异。在进行算法和代码优化时,建议根据具体的数据和计算需求,结合 GEE 平台的特点和限制,进行合理的优化设计,从而提高处理效率和降低内存使用。
三、怎么联系GEE 的支持团队
对于需要处理大规模数据或需要更高内存限制的任务,可以向GEE团队提交高级内存申请。GEE团队会评估申请并酌情提供更高的内存限制。
您可以通过以下方式联系 Google Earth Engine(GEE)的支持团队:
-
在 GEE 平台上打开“帮助”选项卡,然后点击“联系我们”按钮。填写表格后,您的请求将发送给 GEE 的支持团队。
-
发送电子邮件至 earthengine@google.com。请提供您的问题、用户名和其他相关信息,以便支持团队能够快速回复您。
-
访问 GEE 的论坛页面:https://groups.google.com/g/google-earth-engine-help。在该论坛上,您可以与其他 GEE 用户交流经验,并且寻求支持团队的帮助。
需要注意的是,GEE 的支持团队可能需要一些时间来回复您的请求。因此,请耐心等待并留下足够的时间来等待他们的回复。