GEE:连续变化检测与分类(Continuous Change Detection and Classification, CCDC)教程

连续变化检测与分类(Continuous Change Detection and Classification, CCDC)是一种土地变化监测算法,旨在对卫星数据的时间序列进行操作,特别是Landsat数据。CCDC包括两个部分,其一是变化检测算法(Change Detection Component, CCD),其二是分类算法(Classification)。

本文将分别介绍CCDC的这两个算法的代码。通过本文,你将学习如何在 Google Earth Engine (GEE) 平台上运行 CCD 算法、解释其输出结果以及可视化系数和变化信息,以及学会使用 CCDC 进行分类。

注意,本文是一个目录,通过超链接可以访问其他具体的内容。



一、变化检测组件(Change Detection Component, CCD)

CCD 组件负责检测地表的变化情况,主要基于时间序列的光谱变化来识别土地覆盖或土地利用的变化。它使用了一个连续的时间序列分析方法,通过对每个像素点拟合一个时间序列模型,来描述每个像素随时间的变化趋势,并检测那些不符合预期模型的行为,从而识别出变化的发生。当模型检测到光谱特征发生显著变化时,认为该像素发生了变化(如土地利用变更、森林砍伐等)。

1.1 生成CCD检测结果数组

CCDC的基础,之后的所有操作都必须使用这段代码生成的结果进行。

参考博客《GEE:连续变化检测 CCD 第一步(导出ee.Algorithms.TemporalSegmentation.Ccdc函数的结果)》。

1.2 干扰信息

参考博客《GEE:连续变化检测 CCDC 提取断点信息(干扰时间、干扰幅度、干扰次数)

1.3 恢复信息

参考博客《GEE:连续变化检测 CCDC 提取断点信息(恢复时间、恢复幅度、恢复次数)

1.4 变化信息

参考博客《GEE:连续变化检测 CCDC 提取变化信息(变化次数、第一次变化时间、最后一次变化时间)》、《GEE:连续变化检测 CCDC 提取断点信息(第一次/最后一次的干扰/恢复)》。

1.5 精度验证
1.5.1 目视解译方法

参考博客《GEE:基于Landsat的验证影像获取和下载》或者《GEE:通过 CCDC 内置 API 进行变化检测精度验证》。

1.5.2 APP验证

https://parevalo_bu.users.earthengine.app/
在APP中找到变化点,点击,查看时序中断点是否准确。

1.6 提取和可视化 CCDC 算法的时间段系数

参考博客《GEE:提取 CCDC 算法的时间段系数》或者《GEE:通过 gee-ccdc-tools 提供的 API 函数提取 CCDC 算法的时间段系数

二、分类组件(Classification)

参考博客《GEE:CCDC 分类组件,对每个分段进行分类

### 使用 GEE 平台实现 CCDC 连续变化检测分类 #### 安装导入库 为了在 Google Earth Engine (GEE) 中使用 CCDC 算法,首先需要安装并加载必要的 Python 库。 ```python import ee ee.Initialize() ``` #### 初始化 EE 数据集 定义研究区域以及所需的时间范围,并初始化 Landsat 图像集合用于后续处理。 ```python # 设置感兴趣区(AOI) aoi = ee.Geometry.Polygon( [[[37.9, 8.5], [37.9, 12.5], [40.5, 12.5], [40.5, 8.5]]]) # 创建Landsat影像合集 landsatCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') \ .filterBounds(aoi) \ .filterDate('2015-01-01', '2020-12-31') ``` #### 执行 CCDC 分析 调用 `geeccdc` 函数来执行连续变化检测算法。此函数会自动分割输入的时间序列数据成多个线性片段,并返回每个片段的信息。 ```python def apply_ccdc(image_collection): ccdc_result = image_collection.ccdc({ 'maxNumSegments': 5, 'minSegmentLength': 60, 'bandNames': ['B4', 'B5'], 'mask': aoi}) return ccdc_result ccdc_output = apply_ccdc(landsatCollection) ``` #### 时间序列段分类 对由 CCDC 输出得到的时间序列段进行分类操作。这里采用监督学习的方式训练随机森林模型来进行最终的土地利用/覆被类型的判定[^1]。 ```python training_data = ee.FeatureCollection([ # 假设这里是已经标注好的样本点... ]) classifier = ee.Classifier.smileRandomForest(10).train(training_data) classified_segments = ccdc_output.classify(classifier) ``` #### 可视化结果 最后一步是将上述计算的结果可视化出来以便直观查看不同类别之间的分布情况。 ```python Map.addLayer(classified_segments.randomVisualizer(), {}, ' Classified Segments') Map.centerObject(aoi, 8) ``` 通过以上流程可以在 GEE 平台上完成从获取卫星图像到应用 CCDC 技术直至获得土地覆盖类型图的过程[^2]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值