Matlab学习

离散时间信号与系统

matlab里面冲击序列\delta \left ( n \right )表示方法:

function[x,n]=impseq(n0,n1,n2)

%generate x(n)=delta(n-n0);n1<=n<=n2
%---------------------------------
%[x,n]=impseq(n0,n1,n2)
%
n=[n1:n2];x=[(n-n0)==0];

matlab里面阶跃序列u[n]表示方法:

function[x,n]=stepseq(n0,n1,n2)

%generate x(n)=u(n-n0);n1<=n<=n2
%---------------------------------
%[x,n]=stepseq(n0,n1,n2)
%
n=[n1:n2];x=[(n-n0)>=0];

实指数序列x[n]=0.9^n。并且以n为横坐标,x为纵坐标,作图

function[x]=expon(a)
% generate real exponential sequence x[n]=a^n
n=[0:1:10];
x=a.^n;
stem(n,x,'b');

复指数序列x[n]=e^{(\sigma +jw_{0})n}

function[x]=expone(a,b)
% generate real exponential sequence x[n]=exp()
n=[0:1:10];
x=exp((a+b*j)*n);

正弦序列x[n]=3cos(0.1\pi n+\frac{\pi}{3})+2sin(0.5\pi n)

n=[0:1:10];
x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n)

随机序列

rand(1,N)产生一个长度为N,其值在[0,1]之间均匀分布的随机序列;randn(1,N)产生一个长度为N,均值为0,方差为1的高斯随机序列。

周期序列

function[x]=Periodic(n,p)
%generate Periodic sequence
%where n represents the initial sequence
%and p represents the number of repetitions 
x=n'*ones(1,p);
x=x(:);%将x矩阵一列一列的取出,并排列,变成一个n*1的矩阵

序列的相关性

目的:看两个序列的相似程度,相关值越大,越相关

实序列互相关:

r_{xy}=x(n)*y(-n)

r_{yx}=y(n)*x(-n)

实序列自相关:

r_{xx}=x(n)*x(-n)

举个例子,序列x=[\bar{3} ,5 ,-7, 2, -1, -3, 2],与序列y=[0,0,\bar{3} ,5 ,-7, 2, -1, -3, 2],互相关,代码如下:

nx=0:6;x=[3 5 -7 2 -1 -3 2];
ny=2:8; y0=x;

w=randn(1,length(y0));
y=y0+w;

ryx=xcorr(y,x);
nryx=-4:8;

stem(nryx,ryx,'r','linewidth',2);
xlabel('nryx');ylabel('ryx');

结果如下:

结论:在n=2的时候相关值最大

MATLAB实现差分传递推解的函数 

y(n)-0.5y(n-1)=0.5x(n)

b=0.5;                %x的各项系数
a=[1,-0.5];           %y的各项系数,从低阶往高阶延时
x=ones(1,100);
y=filter(b,a,x);

采样定理

         低通信号的采样要满足奈奎斯特采样定理,即:采样频率f_{s}和低通信号的最高频f_{m}满足:f_{s}\geqslant 2f_{m},便可以保证采样之后的频谱不发生交叠,当f_{s}=2f_{m}时,就是奈奎斯特采样定理。数字信号处理中,在采样之前,往往需要通过一个预处理器,其目的是将低通信号限制在一个频率范围之内,防止采样之后的频谱发生交叠。

        对于带通信号,当f_{h}=r\Delta f_{0},其中r整数,\Delta f_{0}是带宽,即带通信号的最高频率是带宽的整数倍时,则选择抽样频率f_{s}=2\Delta f_{0},采样后的频谱不会发生混叠现象,只要通过合适的带通滤波器便可以恢复原始信号。

        带通信号中,f_{h}=r'\Delta f_{0},其中r'不是整数,则将通带下端延申到使其带宽为\Delta f_{0}',且满足:f_{h}=r\Delta f_{0}',此时r为整数,然后用上述带通信号的方法抽样。

模拟信号的数字处理方法

零阶保持器:理想采样信号\delta (t)在实际中是不可实现的,实际中采样的信号是矩形信号,在一段时间维持矩形信号电平不变的器件就是零阶保持器。

平滑滤波器:平滑滤波器在时域上就是把信号变得平滑,在频域上是滤除信号的高频的成分。

离散时间信号傅里叶变换的基本概念

正变换:

DTFT[x(n)]=X(e^{jw})=\sum_{n=-\infty }^{\infty }x(n)\cdot e^{-jwn}

反变换:

DTFT^{-1}[X(e^{jw})]=x(n)=\frac{1}{2\pi }\int_{-\pi }^{\pi}X(e^{jw})e^{jwn}dw

说明:①正变换的收敛条件为:

\sum_{n=-\infty }^{\infty}\left | x(n)\cdot e^{-jwn} \right |=\sum_{n=-\infty }^{\infty}\left | x(n) \right |< \infty

若序列绝对可和,则他的傅里叶变换存在且连续。

X(e^{jw})的特性:

由于时域上x(n)的离散,使得频域上的X(e^{jw})出现周期的特性,周期为2\pi

X(e^{jw})=X(e^{j(w+2\pi))})

DTFT正变换和反变换的由来

①正变换:可由z变换定义得到

DTFT[x(n)]=\sum_{n=-\infty }^{\infty}x(n)z^{-n}|_{z=e^{jw}}=\sum_{n=-\infty}^{\infty}x(n)\cdot e^{-jwn}

②反变换:若序列的z变换在单位圆上收敛时:

x(n)=\frac{1}{2{\pi}j}\oint _{c}X(z)z^{n-1}dz=\frac{1}{2{\pi}j}\int_{-\pi}^{\pi}X(e^{jw}))e^{jwn}e^{-jw}d(e^{jw})=\frac{1}{2{\pi}j}\int_{-\pi}^{\pi}X(e^{jw})e^{^{jwn}}e^{-jw}e^{jw}jdw=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw

共轭对称序列和共轭反对称序列

共轭对称序列:

x_{e}(n)=x^{\ast }_{e}(-n) 

x_{e}(n)=x_{er}(n)+jx_{ei}(n)

x^{*}_{e}(-n)=x_{er}(-n)-jx_{ei}(-n)

实部是偶函数x_{er}(n)=x_{er}(-n),虚部是奇函数x_{ei}(n)=-x_{ei}(-n)

共轭反对称序列:

x_{o}(n)=-x^{\ast }_{o}(-n)

x_{o}(n)=x_{or}(n)+jx_{oi}(n)

x^{*}_{o}(-n)=x_{or}(-n)-jx_{oi}(-n)

实部是奇函数x_{or}(n)=-x_{or}(-n),虚部是偶函数x_{oi}(n)=x_{oi}(-n)

x(n)表示x_{e}(n)x_{o}(n)

x(n)=x_{e}(n)+x_{o}(n)

x_{e}(n)=\frac{1}{2}[x(n)+x^{*}(-n)]

x_{o}(n)=\frac{1}{2}[x(n)-x^{*}(-n)]

关于频域函数X(e^{jw})的共轭对称性质描述

X(e^{jw})=X_{e}(e^{jw})+X_{o}(e^{jw})

共轭对称序列:X_{e}(e^{jw})=X_{e}^{*}(e^{-jw})

共轭反对称序列:X_{o}(e^{jw})=-X_{o}^{*}(e^{-jw})

X_{e}(e^{jw})=\frac{1}{2}[X(e^{jw})+X^{*}(e^{-jw})]

X_{o}(e^{jw})=\frac{1}{2}[X(e^{jw})-X^{*}(e^{-jw})]

时域与频域对应的共轭对称性质

①序列实部的傅里叶变换等于序列傅里叶变换的共轭对称分量

DTFT[Re[x(n)]]=X_{e}(e^{jw})

②序列虚部的傅里叶变换等于序列傅里叶变换的共轭反对称分量

DTFT[jIm[x(n)]]=X_{o}(e^{jw})

③序列的共轭对称分量和共轭反对称分量的DTFT分别等于序列傅里叶变换的实部和虚部

DTFT[x_{e}(n)]=Re[X(e^{jw})]

DTFT[x_{o}(n)]=jIm[X(e^{jw})]

④特殊情况:当x(n)实序列X(e^{jw})应该只剩下共轭对称分量(实序列无虚部,所以无共轭反对称分量)

X(e^{jw})=X^{*}(e^{-jw})

Re[X(e^{jw})]=Re[X^{*}(e^{-jw})]

Im[X(e^{jw})]=-Im[X^{*}(e^{-jw})]

\left | X(e^{jw}) \right |=\left | X^{*}(e^{-jw}) \right |

arg[\left | X(e^{jw}) \right |]=-arg[\left | X^{*}(e^{-jw}) \right |]

设计数字滤波器的一般原则

1.若使设计的滤波器拒绝某一个频率(不让该信号通过),应在单位圆上相应频率处设置一个零点

2.若使设计的滤波器突出某个频率(使该信号尽可能无衰减的通过),应在单位圆内相应的频率处设置一个极点,极点越接近单位圆,该频率处的幅频响应值越大

简单一阶滤波器设计

仅由一个零点或极点调节系统滤波特性

由一个零点调节的低通滤波器

注意:数字角频率与f_{s}的对应比例关系如下:w=\pi对应\frac{f_{s}}{2};

那么w=2\pi对应f_{s}

傅里叶级数、傅里叶变换、离散时间信号傅里叶变换

从傅里叶变换FT到序列傅里叶变换DFTFT

为什么要研究DFS?

因为我们希望时域和频域处理的信号都是离散的

注意w=\frac{2\pi}{N}k

DFT和DFS的关系:DFS是周期离散的,DFT是DFS的一个主值区间。

 

   

  

 

 

定理:Re[x(n)]=\frac{1}{2}[x(n)+x^{*}(n)]

 

 

 

 

 

 

 

 

 

FFT变换

 

下图PPT公式写的不好,是M=log_{2}(N),下面同理

 

 

 

进一步提高计算速度的方法

 

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值