import numpy as np
# 原始数据
data = np.array([
[66, 64, 65, 65, 65],
[65, 63, 63, 65, 64],
[57, 58, 63, 59, 66],
[67, 69, 65, 68, 64],
[61, 61, 62, 62, 63],
[64, 65, 63, 63, 63],
[64, 63, 63, 63, 64],
[63, 63, 63, 63, 63],
[65, 64, 65, 66, 64],
[67, 69, 69, 68, 67],
[62, 63, 65, 64, 64],
[68, 67, 65, 67, 65],
[65, 65, 66, 65, 64],
[62, 63, 64, 62, 66],
[64, 66, 66, 65, 67]
])
# 标准化
mean_data = np.mean(data, axis = 0)
std_data = np.std(data, axis = 0, ddof = 1)
standardized_data = (data - mean_data) / std_data
# 计算协方差矩阵
cov_matrix = np.cov(standardized_data.T)
print(cov_matrix)
输出结果
最新发布