【可解释】|Keep CALM and Improve Visual Feature Attribution(ICCV2021)

本文提出了一种新颖的视觉特征归因方法:类激活潜在映射(CALM)。基于最后一层 CNN 的概率处理,CALM在设计上是可解释的

类激活映射(CAM,class activation mapping)一直是多视觉任务特征归因方法的基石。它的简单性和有效性导致了在解释视觉预测和弱监督定位任务方面的广泛应用。但是,CAM 有其自身的缺点。归因图的计算依赖于不属于训练计算图的临时校准步骤,这使我们难以理解归因值的真正含义。

在本文中,我们通过在公式中显式地结合编码线索位置的潜在变量来改进 CAM,从而将归因图包含到训练计算图中。生成的模型、类激活潜在映射(即CALM,class activation latent mapping)使用期望最大化算法进行训练。

CODE
https://github.com/naver-ai/calm
PAPER
https://arxiv.org/abs/2106.07861

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值