查准率P(Precision)、查全率R(Recall)、P-R曲线、AP

本文详细介绍了机器学习评估指标中的查准率(Precision)和查全率(Recall),包括它们的定义、计算方式以及在实际问题中的重要性。查准率表示预测为正例的样本中真正为正例的比例,查全率则关注所有真正例被正确预测的比例。此外,文章还讨论了P-R曲线、平均精度AP的概念,并解释了这些指标如何帮助优化模型性能,特别是在不平衡数据集上的应用。
摘要由CSDN通过智能技术生成

P、R

TP:真正例(true positive),即真实结果和预测结果都是正例。

FP:假正例(false positive),即真实结果是反例、预测结果是正例。

TN:真正例(true negative),即真实结果和预测结果都是反例。

FN:假反例(false negative),即真实结果是正例、预测结果是反例。

查准率P(Precision)、查全率R(Recall):

P为预测为正例的正确率

R为真实结果为正例的预测正确率

P-R曲线

在confidence score中,从top-1到top-N(N是所有测试样本个数)对应的precision和recall,制作成表格,其中recall为横坐标,precision为纵坐标。

AP

AP为PR曲线与X轴围成的图形面积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值