BZOJ4036: [HAOI2015]按位或(FMT)

传送门

题意:

刚开始你有一个数字0,每一秒钟你会随机选择一个 [0,2n1] 的数字,与你手上的数字进行按位或操作。选择数字 i 的概率是pi。保证 0<=p[i]<=1 Σp[i]=1 问期望多少秒后,你手上的数字变成 2n1

题解:

构造这个概率序列的集合幂级数:

f=s2Upsxs

此时定义 xAxB=xAB
答案为:
g=i=1i(fifi1)

的第 U 项。
看到集合幂级数加减,马上想到用FMT
g^=i=1i(f^if^i1)

注意到 FMT 之后乘法变为简单的点乘,后面的式子进行等比数列求和,得到 g^U ,再做 IFMT 即可。

#include <bits/stdc++.h>
using namespace std;
const double eps=1e-9;
const int N=21,LIM=(1<<20)+10;
int n,lim;
double p[LIM],g[LIM];
int main() {
    scanf("%d",&n); lim=(1<<n)-1;
    for(int i=0;i<=lim;i++) {
        scanf("%lf",&p[i]);
        if(p[i]+eps>1.0){
            (i==lim)?puts("1.00000000"):puts("INF");
            return 0;
        }
    } 
    for(int i=1;i<=lim;i<<=1) 
        for(int j=0;j<=lim;j++) 
            if(j&i) p[j]=p[j]+p[j^i];
    for(int i=0;i<=lim;i++) 
        g[i]= (p[i]+eps>1.0) ?0 :-1.0/(1.0-p[i]);
    for(int i=1;i<=lim;i<<=1) 
        for(int j=0;j<=lim;j++) 
            if(j&i) g[j]=g[j]-g[j^i];
    if(g[lim]<eps) {puts("INF"); return 0;}
    printf("%.10f",g[lim]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值