题意:
刚开始你有一个数字0,每一秒钟你会随机选择一个 [0,2n−1] 的数字,与你手上的数字进行按位或操作。选择数字 i 的概率是
pi 。保证 0<=p[i]<=1 , Σp[i]=1 问期望多少秒后,你手上的数字变成 2n−1 。
题解:
构造这个概率序列的集合幂级数:
f=∑s∈2Upsxs
此时定义 xA∗xB=xA∪B
答案为:
g=∑i=1∞i(fi−fi−1)
的第 U 项。
看到集合幂级数加减,马上想到用
g^=∑i=1∞i(f^i−f^i−1)
注意到 FMT 之后乘法变为简单的点乘,后面的式子进行等比数列求和,得到 g^U ,再做 IFMT 即可。
#include <bits/stdc++.h>
using namespace std;
const double eps=1e-9;
const int N=21,LIM=(1<<20)+10;
int n,lim;
double p[LIM],g[LIM];
int main() {
scanf("%d",&n); lim=(1<<n)-1;
for(int i=0;i<=lim;i++) {
scanf("%lf",&p[i]);
if(p[i]+eps>1.0){
(i==lim)?puts("1.00000000"):puts("INF");
return 0;
}
}
for(int i=1;i<=lim;i<<=1)
for(int j=0;j<=lim;j++)
if(j&i) p[j]=p[j]+p[j^i];
for(int i=0;i<=lim;i++)
g[i]= (p[i]+eps>1.0) ?0 :-1.0/(1.0-p[i]);
for(int i=1;i<=lim;i<<=1)
for(int j=0;j<=lim;j++)
if(j&i) g[j]=g[j]-g[j^i];
if(g[lim]<eps) {puts("INF"); return 0;}
printf("%.10f",g[lim]);
}