Pytorch-Autograd

原文链接: http://chenhao.space/post/294ead72.html

import torch

print(torch.__version__)
1.1.0

自动求梯度

概念

上一节介绍的Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作。完成计算后,可以调用**.backward()来完成所有梯度计算**。此Tensor的梯度将累积到.grad属性中。

注意在调用.backward()时,如果Tensor是标量,则不需要为backward()指定任何参数;否则,需要指定一个求导变量。

如果不想要被继续追踪,可以调用.detach()将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪。此外,还可以用with torch.no_grad()将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。

Function是另外一个很重要的类。TensorFunction互相结合就可以构建一个记录有整个计算过程的非循环图。每个Tensor都有一个.grad_fn属性,该属性即创建该TensorFunction(除非用户创建的Tensor时设置了grad_fn=None)。

下面通过一些例子来理解这些概念。


Tensor

x = torch.ones(2, 2, requires_grad=True)
print(x)
print(x.grad_fn)
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
None
y = x + 2
print(y)
print(y.grad_fn)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)
<AddBackward0 object at 0x12682dac8>

注意x是直接创建的,所以它没有grad_fn, 而y是通过一个加法操作创建的,所以它有一个为<AddBackward>grad_fn

print(x.is_leaf, y.is_leaf)   # 叶子结点是直接创建的
True False
z = y * y * 3
out = z.mean()
print(z, out)
print(z.is_leaf)
tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)
False

通过.requires_grad_()来用in-place的方式改变requires_grad属性:

a = torch.randn(2, 2)   # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad)  # False

a.requires_grad_(True)
print(a.requires_grad)   # True

b = (a * a).sum()
print(b.grad_fn)
print(b.requires_grad)
False
True
<SumBackward0 object at 0x126729908>
True

梯度

因为out是一个标量,所以调用backward()时不需要指定求导变量:

out.backward()  # 等价与 out.backward(torch.tensor(1.))
print(x.grad)
tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

我们令out o o o , 因为
o = 1 4 ∑ i = 1 4 z i = 1 4 ∑ i = 1 4 3 ( x i + 2 ) 2 o=\frac14\sum_{i=1}^4z_i=\frac14\sum_{i=1}^43(x_i+2)^2 o=41i=14zi=41i=143(xi+2)2
所以
∂ o ∂ x i ∣ x i = 1 = 9 2 = 4.5 \frac{\partial{o}}{\partial{x_i}}\bigr\rvert_{x_i=1}=\frac{9}{2}=4.5 xioxi=1=29=4.5
所以上面的输出是正确的。

数学上,如果有一个函数值和自变量都为向量的函数 y ⃗ = f ( x ⃗ ) \vec{y}=f(\vec{x}) y =f(x ), 那么 y ⃗ \vec{y} y 关于 x ⃗ \vec{x} x 的梯度就是一个雅可比矩阵(Jacobian matrix):

J = ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) J=\left(\begin{array}{ccc} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\ \vdots & \ddots & \vdots\\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{array}\right) J=x1y1x1ymxny1xnym

torch.autograd这个包就是用来计算一些雅克比矩阵的乘积的。例如,如果 v v v 是一个标量函数的 l = g ( y ⃗ ) l=g\left(\vec{y}\right) l=g(y ) 的梯度:

v = ( ∂ l ∂ y 1 ⋯ ∂ l ∂ y m ) v=\left(\begin{array}{ccc}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right) v=(y1lyml)

那么根据链式法则我们有 l l l 关于 x ⃗ \vec{x} x 的雅克比矩阵就为:

v ⋅ J = ( ∂ l ∂ y 1 ⋯ ∂ l ∂ y m ) ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) = ( ∂ l ∂ x 1 ⋯ ∂ l ∂ x n ) v \cdot J=\left(\begin{array}{ccc}\frac{\partial l}{\partial y_{1}} & \cdots & \frac{\partial l}{\partial y_{m}}\end{array}\right) \left(\begin{array}{ccc} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}}\\ \vdots & \ddots & \vdots\\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{array}\right)=\left(\begin{array}{ccc}\frac{\partial l}{\partial x_{1}} & \cdots & \frac{\partial l}{\partial x_{n}}\end{array}\right) vJ=(y1lyml)x1y1x1ymxny1xnym=(x1lxnl)

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。

# 再来反向传播一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)

out3 = x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)
tensor([[5.5000, 5.5000],
        [5.5000, 5.5000]])
tensor([[1., 1.],
        [1., 1.]])
x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)
tensor([[2., 4.],
        [6., 8.]], grad_fn=<ViewBackward>)

现在 y 不是一个标量,所以在调用backward时需要传入一个和y同形的权重向量进行加权求和得到一个标量。

v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)

print(x.grad)
tensor([2.0000, 0.2000, 0.0200, 0.0020])

再来看看中断梯度追踪的例子:

x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2
with torch.no_grad():
    y2 = x ** 3
y3 = y1 + y2

print(x, x.requires_grad)
print(y1, y1.requires_grad)
print(y2, y2.requires_grad)
print(y3, y3.requires_grad)
tensor(1., requires_grad=True) True
tensor(1., grad_fn=<PowBackward0>) True
tensor(1.) False
tensor(2., grad_fn=<AddBackward0>) True
y3.backward()
print(x.grad)
tensor(2.)

为什么是2呢?$ y_3 = y_1 + y_2 = x^2 + x^3$,当 x = 1 x=1 x=1 d y 3 d x \frac {dy_3} {dx} dxdy3 不应该是5吗?事实上,由于 y 2 y_2 y2 的定义是被torch.no_grad():包裹的,所以与 y 2 y_2 y2 有关的梯度是不会回传的,只有与 y 1 y_1 y1 有关的梯度才会回传,即 x 2 x^2 x2 x x x 的梯度。

上面提到,y2.requires_grad=False,所以不能调用 y2.backward()

# y2.backward() 
# 会报错 RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

如果我们想要修改tensor的数值,但是又不希望被autograd记录(即不会影响反向传播),那么我么可以对tensor.data进行操作.

x = torch.ones(1, requires_grad=True)

print(x.data)  # 还是一个tensor
print(x.data.requires_grad)  # 但是已经是独立于计算图之外

y = 2 * x
x.data *= 100  # 只改变了值,不会记录在计算图,所以不回影响梯度传播

y.backward()
print(x)   # 更改data的值也会影响tensor的值
print(x.grad)
tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值