Coupled Layer-wise Graph Convolution for Transportation Demand Prediction
Introduction
现有工作问题
-
图卷积网络中决定聚合方式的邻接矩阵大多是固定的,根据空间距离或网络连通性通过启发式方法生成,不能捕捉真正的空间相关性。
-
现有方法忽略了交通需求预测的层次依赖性。例如,突发性暴雨导致全球共享自行车使用量减少,但交通事故导致的拥堵只能造成局部影响。
-
当前的图卷积方法主要从图信号处理的角度出发,倾向于平滑节点的输入信号。在这种情况下,只有一个邻接矩阵的堆叠图卷积层很难有效地获得运输需求的多级表示。
-
对最终运输需求起作用的不同层中的表示不应是静态的,而应是随时间变化的动态的。例如,交通紧急情况可能会增加低级别特征的影响。
工作特点
-
提出了一种新的图卷积结构,用于自适应提取多级空间相关性。该结构在不同层次上具有不同的邻接矩阵,所有邻接矩阵在训练过程中都是自学习的。
-
根据不同层次拓扑结构的隐含相关性,提出了一种层次耦合机制,将上层邻接矩阵与下层邻接矩阵连接起来。它还减少了计算量。
-
提出了一种统一的预测框架,通过将空间隐藏状态与序列到序列结构中的选通递归单元相结合来进行最终预测,其中空间隐藏状态通过聚合多级需求依赖来获得。
准备工作
1.邻接矩阵
给定一个图G=(V,E),在时间步t,图G具有特征矩阵,时间步长T,通过函数f1可以得到邻接矩阵A
2.需求预测
在时间步t,给定图G和P步历史图信号,一个映射函数f2来预测接下来的Q步图信号
3.图卷积网络
A是邻接矩阵,D是节点度的对角矩阵,移除激活函数,并在无向图结构下用K步对扩散过程进行建模,从而得出最终的特征传播方程:
方法
邻接矩阵构造
邻接矩阵在图卷积中决定了节点自身及其邻域的聚合方式,本文通过数据驱动的方式产生邻接矩阵,并且提取了时间相关性。
将三维的图信号变成二维*节点个数,即 从τ×N×d变成(τ · d) × N.
为了捕获不同站点之间的内部相似性并过滤站点之间的冗余信息,将二维信息进行奇异值分解,时间矩阵和站点矩阵:
站点矩阵
其中N表示站点个数, ξ \xi ξ表示站点特征,计算站点特征之间的相似性作为邻接矩阵的边权重:
A x y = s i m i l a r i t y ( X x s , X y s ) A_{xy}= similarity(X_x^s,X_y^s) A