Coupled Layer-wise Graph Convolution for Transportation Demand Prediction

该文提出了一种新型的图卷积结构——耦合层-wise图卷积(CGC),用于交通需求预测。与传统图卷积不同,CGC在不同层使用自学习的邻接矩阵,捕捉多层次空间相关性。通过分层耦合机制,上下层邻接矩阵相互连接,进一步增强信息提取能力。此外,利用注意力机制进行多级信息聚合,并结合GRU处理时间序列动态性。这种方法旨在解决现有模型在邻接矩阵生成、空间相关性和时间依赖性建模上的局限性。
摘要由CSDN通过智能技术生成

1.文章概述

现有大部分研究的图卷积是在启发式生成的邻接矩阵上实现的,既不能准确反映站点的真实空间关系,也不能自适应地捕捉需求的多层次空间相关性。为解决这些问题。首先,提出了一种新颖的图卷积结构,该结构在不同层具有不同的邻接矩阵,并且所有邻接矩阵在训练过程中都是自学习的。其次,提出了一种分层耦合机制,将上层邻接矩阵和下层邻接矩阵联系起来。最后,通过将隐藏的空间状态与门控递归单元相结合,该网络可以同时捕捉多层次的空间相关性和时间动态性。

当前研究的一些局限性

  • 图卷积网络中决定聚合方式的邻接矩阵大多是固定的,根据空间距离或网络连通性用启发式方法生成,不能捕捉真正的空间相关性。
  • 现有方法忽略了运输需求预测的层次依赖性。
  • 只有一个邻接矩阵的堆叠图卷积很难有效捕捉所需的依赖关系
  • 不同层的表示对最终交通预测的贡献不应该是静态的,而是随着时间是动态的。

本文主要贡献点

  • 提出了一种新的图形卷积结构,用于自适应地提取多级空间相关性
  • 提出了一种分层耦合机制,以桥接上层邻接矩阵和下层邻接矩阵
  • 提出了一个统一的预测框架来进行最终的预测,将图卷积与GRU结合在一个seq2seq的体系结构中进行最终预测

几种不同GCN的比较

在这里插入图片描述

(a) che_GCN:引入了一阶切比雪夫多项式滤波器逼近的图卷积

(b) GIN(Graph Isomorphism Network) :是通过在邻接矩阵上增加一个加权单位矩阵来构造的

© SGC(Simple Graph Convolution) :通过将初始邻接矩阵乘以它自己的倍来简化多层图卷积网络

(d) gfNN(graph filter Neural Network) :在SGC的基础上增加了激活函数和映射函数,以便对非线性相关性进行建模

(e) MixHop:通过邻接矩阵的混合幂探索近邻和远邻的潜在表示

2.Methodology

在这里插入图片描述

2.1 Adjacency Matrix Generation

本文作者提出了一种新的构图方法,首先对于给定的图信号 X t a : t a + τ − 1 ∈ R τ × N × d \mathbf{X}_{t_{a}: t_{a}+\tau-1} \in \mathbf{R}^{\tau \times N \times d} Xta:ta+τ1Rτ×N×d ,将其reshape成2-D矩阵 ( τ ⋅ d ) × N (\tau \cdot d)\times N (τd)×N 。为了捕捉不同站点之间的内部相似性并过滤站点之间的冗余信息,本文将二维矩阵分解为两个: X a = X t X s T X_a=X^tX^{sT} Xa=XtXsT,分别表示表示时间维度和站点维度的矩阵。接下来通过计算 X s X^s Xs 不同行的相识度作为邻接矩阵。
A x y = exp ⁡ ( − ∥ X x s − X y s ∥ 2 ε 2 ) \boldsymbol{A}_{x y}=\exp \left(-\frac{\left\|\boldsymbol{X}_{x}^{s}-\boldsymbol{X}_{y}^{s}\right\|^{2}}{\varepsilon^{2}}\right) Axy=exp(ε2XxsXys2)

2.2 Coupled Layer-wise Graph Convolution

为了高效、准确地捕捉多级相关性,我们提出了一种新的图卷积网络——耦合分层图卷积(CGC),其在不同的层中具有不同的邻接矩阵。其递归表示如下所示
Z ( m + 1 ) = Z ( m ) ⋆ G g θ ( m ) = ∑ i = 0 K ( A ( m ) ) i Z ( m ) θ i ( m ) \boldsymbol{Z}^{(m+1)}=\boldsymbol{Z}^{(m)} \star_{G} \boldsymbol{g}_{\boldsymbol{\theta}}^{(m)}=\sum_{i=0}^{K}\left(\boldsymbol{A}^{(m)}\right)^{i} \boldsymbol{Z}^{(m)} \boldsymbol{\theta}_{i}^{(m)} Z(m+1)=Z(m)Ggθ(m)=i=0K(A(m))iZ(m)θi(m)
其中 Z m Z^{m} Zm 表示 m + 1 m+1 m+1 层的输入,且是第 m m m 层的输出, A m A^{m} Am 在不同层中是不一样的,递推公式可以表示为:
A ( m + 1 ) = ψ ( m ) ( A ( m ) ) \boldsymbol{A}^{(m+1)}=\psi^{(m)}\left(\boldsymbol{A}^{(m)}\right) A(m+1)=ψ(m)(A(m))
其中 ψ ( m ) \psi^{(m)} ψ(m)表示耦合映射函数。在计算过程中为了减少参数数量,我们将前面生成的邻接矩阵通过SVD分解成两个小矩阵,且这两个小矩阵是可训练的
A ( 0 ) = E 1 ( 0 ) E 2 ( 0 ) T A^{(0)}=E_1^{(0)}E_2^{(0)^T} A(0)=E1(0)E2(0)T
且对 E 1 , E 2 E_1,E_2 E1,E2的映射函数采用权值共享 ψ ( m ) \psi^{(m)} ψ(m),其中 ψ ( m ) \psi^{(m)} ψ(m)在实验中使用的是全连接映射,可以表示为:
E 1 ( m ) = E 1 ( m − 1 ) W ( m − 1 ) + b ( m − 1 ) E 2 ( m ) = E 2 ( m − 1 ) W ( m − 1 ) + b ( m − 1 ) \begin{aligned} &\boldsymbol{E}_{1}^{(m)}=\boldsymbol{E}_{1}^{(m-1)} \boldsymbol{W}^{(m-1)}+\boldsymbol{b}^{(m-1)} \\ &\boldsymbol{E}_{2}^{(m)}=\boldsymbol{E}_{2}^{(m-1)} \boldsymbol{W}^{(m-1)}+\boldsymbol{b}^{(m-1)} \end{aligned} E1(m)=E1(m1)W(m1)+b(m1)E2(m)=E2(m1)W(m1)+b(m1)
最终的图卷积公式可以表示为:
Z ( m + 1 ) = ∑ i = 0 R ( E 1 ( m ) E 2 ( m ) T ) i Z ( m ) θ i ( m ) \boldsymbol{Z}^{(m+1)}=\sum_{i=0}^{R}\left(\boldsymbol{E}_{1}^{(m)} \boldsymbol{E}_{2}^{(m)^{T}}\right)^{i} \boldsymbol{Z}^{(m)} \boldsymbol{\theta}_{i}^{(m)} Z(m+1)=i=0R(E1(m)E2(m)T)iZ(m)θi(m)

2.3 Multi-level Aggregation

为了从所有图卷积层中收集信息,而不是仅从一个固定层中提取信息,本文通过注意力机制来实现多级聚集,以选择对当前预测任务相对重要的信息。由CGC获得的图形信号的多级表示可以表示为 Z = { Z ( 1 ) , Z ( 2 ) , … , Z ( m ) , … , Z ( M ) } , Z ∈ R M × N × β \mathbb{Z}=\left\{\boldsymbol{Z}^{(1)}, \boldsymbol{Z}^{(2)}, \ldots, \boldsymbol{Z}^{(m)}, \ldots, \boldsymbol{Z}^{(M)}\right\},\mathbb{Z}\in R^{M\times N\times \beta} Z={Z(1),Z(2),,Z(m),,Z(M)},ZRM×N×β ,其中 M M M 表示图卷积层数, β \beta β 表示特征维度,attention scores计算公式如下:
α ( m ) = exp ⁡ ( Z ^ ( m ) W α + b α ) ∑ m = 1 M exp ⁡ ( Z ^ ( m ) W α + b α ) \alpha^{(m)}=\frac{\exp \left(\hat{\boldsymbol{Z}}^{(m)} \boldsymbol{W}_{\alpha}+b_{\alpha}\right)}{\sum_{m=1}^{M} \exp \left(\hat{\boldsymbol{Z}}^{(m)} \boldsymbol{W}_{\alpha}+b_{\alpha}\right)} α(m)=m=1Mexp(Z^(m)Wα+bα)exp(Z^(m)Wα+bα)
最终通过attention scores计算最终的聚合结果:
h = ∑ m = 1 M α ( m ) Z ( m ) \boldsymbol{h}=\sum_{m=1}^{M} \alpha^{(m)} \boldsymbol{Z}^{(m)} h=m=1Mα(m)Z(m)

2.4 Temporal Dependence Modeling

本文将GRU的线性变换替换为CGC和多级聚合的组合。耦合分层卷积递归门控递归单元定义为:
r ( t ) = σ ( Θ r ⋆ G [ h ( t ) , H ( t − 1 ) ] + b r ) , u ( t ) = σ ( Θ u ⋆ G [ h ( t ) , H ( t − 1 ) ] + b u ) , c ( t ) = tanh ⁡ ( Θ c ⋆ G [ h ( t ) , ( r ( t ) ⊙ H ( t − 1 ) ) ] + b c ) H ( t ) = u ( t ) ⊙ H ( t − 1 ) + ( 1 − u ( t ) ) ⊙ c ( t ) , \begin{aligned} \boldsymbol{r}^{(t)} &=\sigma\left(\Theta_{r} \star_{G}\left[\boldsymbol{h}^{(t)}, \boldsymbol{H}^{(t-1)}\right]+\boldsymbol{b}_{r}\right), \\ \boldsymbol{u}^{(t)} &=\sigma\left(\Theta_{u} \star_{G}\left[\boldsymbol{h}^{(t)}, \boldsymbol{H}^{(t-1)}\right]+\boldsymbol{b}_{u}\right), \\ \boldsymbol{c}^{(t)} &=\tanh \left(\Theta_{c} \star_{G}\left[\boldsymbol{h}^{(t)},\left(\boldsymbol{r}^{(t)} \odot \boldsymbol{H}^{(t-1)}\right)\right]+\boldsymbol{b}_{c}\right) \\ \boldsymbol{H}^{(t)} &=\boldsymbol{u}^{(t)} \odot \boldsymbol{H}^{(t-1)}+\left(1-\boldsymbol{u}^{(t)}\right) \odot \boldsymbol{c}^{(t)}, \end{aligned} r(t)u(t)c(t)H(t)=σ(ΘrG[h(t),H(t1)]+br),=σ(ΘuG[h(t),H(t1)]+bu),=tanh(ΘcG[h(t),(r(t)H(t1))]+bc)=u(t)H(t1)+(1u(t))c(t),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值