Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network
相关工作缺陷
- 地图网格划分运用CNN和LSTM进行预测,CNN仅以地理方式捕获局部空间相关性,而无法对两个区域之间的语义相关性建模。
- 大多是研究区域中的骑乘需求,很少有OD的需求预测,现有的od预测在构建邻接矩真实只包含两个网格之间的距离和流量信息,没有充分利用语义信息。
特点
- 构造多个OD图来描述不同OD对之间的成对关系,包括基于起点和终点的邻域关系图、基于起点和终点的功能相似图、基于起点和终点的距离图以及移动性模式相关图。
- 提出了一种新的深度学习模型,该模型具有设计良好的编解码结构,可以对不同OD对之间的空间依赖性和OD对本身的时间依赖性进行建模
研究问题
od graph
- 不再通过正方形或者六边形划分区域,而是通过邮政编码划分区域
- 将一天划分成多个时间间隔,预测同一时间间隔内各种od的订单数量
- 构图 G = (V,E,A),其中顶点v表示每个od对,N = |V|表示每个od对在当前时间段的个数,E表示边集,A表示邻接矩阵
特征定义
x i ( d , t ) x_i^{(d,t)} xi(d,t)表示第d天t时第i个od对的请求数量, X ( d , t ) X^{(d,t)} X(d,t)表示第d天t时所有od对的总数量。因为存在两种主要的时间依赖性:趋势(需求受过去几段时间内历史需求的影响)和周期性(需求在几天和几周内重复类似的模式),所以提取数据得到:
- 基于趋势的特征:OD图中最近两个时间间隔的需求,即 x ( d , t − 2 ) x^{(d,t-2)} x(d,t−2)和 x ( d , t − 1 ) x^{(d,t-1)} x(d,t−1)
- 一天内基于周期的特征:OD图中前一天相同时间间隔的需求,即 x ( d − 1 , t ) x^{(d-1,t)} x(d−1,t)
- 一周内基于周期的特征:OD图中上周同一天相同时间间隔的需求,即 x ( d − 7 ) x^{(d-7)} x(d−7)。
将od对的历史需求映射到下一间隔内od需求:
x ( d , t ) = [ x ( d − 7 ) , x ( d − 1 , t ) , x ( d , t − 2 ) , x ( d , t −