需求预测——Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder

Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network

相关工作缺陷

  1. 地图网格划分运用CNN和LSTM进行预测,CNN仅以地理方式捕获局部空间相关性,而无法对两个区域之间的语义相关性建模。
  2. 大多是研究区域中的骑乘需求,很少有OD的需求预测,现有的od预测在构建邻接矩真实只包含两个网格之间的距离和流量信息,没有充分利用语义信息。

特点

  1. 构造多个OD图来描述不同OD对之间的成对关系,包括基于起点和终点的邻域关系图、基于起点和终点的功能相似图、基于起点和终点的距离图以及移动性模式相关图。
  2. 提出了一种新的深度学习模型,该模型具有设计良好的编解码结构,可以对不同OD对之间的空间依赖性和OD对本身的时间依赖性进行建模

研究问题

od graph

  1. 不再通过正方形或者六边形划分区域,而是通过邮政编码划分区域
  2. 将一天划分成多个时间间隔,预测同一时间间隔内各种od的订单数量
  3. 构图 G = (V,E,A),其中顶点v表示每个od对,N = |V|表示每个od对在当前时间段的个数,E表示边集,A表示邻接矩阵

特征定义

x i ( d , t ) x_i^{(d,t)} xi(d,t)表示第d天t时第i个od对的请求数量, X ( d , t ) X^{(d,t)} X(d,t)表示第d天t时所有od对的总数量。因为存在两种主要的时间依赖性:趋势(需求受过去几段时间内历史需求的影响)和周期性(需求在几天和几周内重复类似的模式),所以提取数据得到:

  1. 基于趋势的特征:OD图中最近两个时间间隔的需求,即 x ( d , t − 2 ) x^{(d,t-2)} x(d,t2) x ( d , t − 1 ) x^{(d,t-1)} x(d,t1)
  2. 一天内基于周期的特征:OD图中前一天相同时间间隔的需求,即 x ( d − 1 , t ) x^{(d-1,t)} x(d1,t)
  3. 一周内基于周期的特征:OD图中上周同一天相同时间间隔的需求,即 x ( d − 7 ) x^{(d-7)} x(d7)

将od对的历史需求映射到下一间隔内od需求:
x ( d , t ) = [ x ( d − 7 ) , x ( d − 1 , t ) , x ( d , t − 2 ) , x ( d , t −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值