【LLM】文心大模型4.5和文心大模型X1

note

  • 整体多模态图片理解上的测试效果一般,在表格解析上没有Qwen2.5-VL-72B好

一、文心大模型4.5模型

链接:https://yiyan.baidu.com

  • 文心大模型4.5是百度自主研发的新一代原生多模态基础大模型,通过多个模态联合建模实现协同优化,多模态理解能力优秀;具备更精进的语言能力,理解、生成、逻辑、记忆能力全面提升,去幻觉、逻辑推理、代码能力显著提升。

技术亮点:
◎ FlashMask动态注意力掩码:加速大模型灵活注意力掩码计算,有效提升长序列建模能力和训练效率,优化长文处理能力和多轮交互表现;
◎ 多模态异构专家扩展技术:根据模态特点构建模态异构专家,结合自适应模态感知损失函数,解决不同模态梯度不均衡问题,提升多模态融合能力;
◎ 时空维度表征压缩技术:在时空维度对图片和视频的语义表征进行高效压缩,大幅提升多模态数据训练效率,增强了从长视频中吸取世界知识的能力;
◎ 基于知识点的大规模数据构建技术:基于知识分级采样、数据压缩与融合、稀缺知识点定向合成技术,构建高知识密度预训练数据,提升模型学习效率,大幅降低模型幻觉;
◎ 基于自反馈的Post-training技术:融合多种评价方式的自反馈迭代式后训练技术,全面提升强化学习稳定性和鲁棒性,大幅提升预训练模型对齐人类意图能力。

在这里插入图片描述

二、文心大模型X1

  • 文心大模型X1具备更强的理解、规划、反思、进化能力,并支持多模态,是首个自主运用工具的深度思考模型。作为能力更全面的深度思考模型,文心大模型X1兼备准确、创意和文采,在中文知识问答、文学创作、文稿写作、日常对话、逻辑推理、复杂计算及工具调用等方面表现尤为出色。
    • 作为能自主运用工具的大模型,文心大模型X1已支持高级搜索、文档问答、图片理解、AI绘图、代码解释器、网页链接读取、TreeMind树图、百度学术检索、商业信息查询、加盟信息查询等多款工具。

技术亮点:
◎递进式强化学习训练方法:创新性地应用递进式强化学习方法,在创作、搜索、工具调用、推理等场景全面提升模型的综合应用能力;
◎基于思维链和行动链的端到端训练:针对深度搜索、工具调用等场景,根据结果反馈进行端到端的模型训练,显著提升训练效果;
◎ 多元统一的奖励系统:建立了统一的奖励系统,融合多种类型的奖励机制,为模型训练提供更加鲁棒的反馈。

举例,表格解析:
在这里插入图片描述
解析结果不正确:
在这里插入图片描述

Reference

[1] 文心一言4.5和X1免费,马上安排实测,来看看效果如何!

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值