随机森林的优点

Author: Frank

随机森林是基于决策树的一种经典的机器学习方法,其由许多课决策树构成,这些决策树是根据带标签的样本数据建立而来。建立各个决策树时采用随机抽样的方法,即从全部标记样本中随机选出部分样本,然后使用这些样本的部分特征建立一课决策树。

对未标记样本做预测时,随机森林里的每一个决策树都需要预测出一个结果,然后综合考虑所有结果给出最终的预测。

随机森林的优点:
a. 对于很多数据集表现良好,精确度比较高,在kaggle等数据竞赛中一般情况下会有较好的表现;
b. 不容易发生过拟合;
c. 可以得到变量的重要性排序;
d. 既能处理离散型数据,也能处理连续型数据,且不需要进行归一化处理; 
e. 能够很好的处理缺失数据;
f. 容易并行化,实现相对简单。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

First Snowflakes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值