卷积的全面理解及其与互相关的关系

本文详细探讨了卷积的概念,从连续和离散形式解释卷积的定义,强调了“卷”(翻转)和“积”(积分)两部分的理解。还介绍了二维卷积和卷积的基本性质,如交换律和结合律。同时,阐述了互相关与卷积的关系,并指出互相关不满足交换律,但有特定的等价形式。对于理解卷积和互相关在信号处理中的作用具有指导意义。
摘要由CSDN通过智能技术生成
  • 卷积的连续形式:
    ( f ∗ g ) ( x ) = ∫ − ∞ + ∞ f ( τ ) g ( x − τ ) d τ ({\rm f}*{\rm g})(x)=\int^{+\infty}_{-\infty}{\rm f}(\tau){\rm g}(x-\tau){\rm d}\tau (fg)(x)=+f(τ)g(xτ)dτ
  • 卷积的离散形式:
    ( f ∗ g ) ( x ) = ∑ τ = − ∞ + ∞ f ( τ ) g ( x − τ ) ({\rm f}*{\rm g})(x)=\sum^{+\infty}_{\tau=-\infty}{\rm f}(\tau){\rm g}(x-\tau) (fg)(x)=τ=+f(τ)g(xτ)
    卷积是一个词,但是理解他要从其单独的两个字去理解,即分别理解 “卷”“积”
一、卷

就是翻转的意思,即在自变量方向,将函数 g ( τ ) {\rm g}(\tau) g(τ)以自变量 τ = 0 \tau=0 τ=0为中心进行反转,得到 g ( − τ ) {\rm g}(-\tau) g(τ),然后再将变换后的函数 g ( − τ ) {\rm g}(-\tau) g(τ)向右移动 x x x个 单位,从而得到函数 g ( x − τ ) {\rm g}(x-\tau) g(xτ)

  • 这里或许你会疑问为什么向右移动 x x x个 单位是 − τ + x -\tau+x τ+x,而不是 − τ − x -\tau-x τx
    这是因为现在自变量已经是 − τ -\tau τ,即当前 − τ -\tau τ减小的方向是之前 τ \tau τ增大的方向,但是有一点是不变的,当自变量加一个正数时,整个函数图像会沿着自变量减小的方向进行移动。
二、积

积就是积分,是对 f ( τ ) g ( x − τ ) {\rm f}(\tau){\rm g}(x-\tau) f(τ)g(xτ) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)范围内进行积分, 这里的约束是 x = τ + ( x − τ ) x=\tau+(x-\tau) x=τ+(xτ) x x x既可以看成是卷积结果 ( f ∗ g ) ( x ) ({\rm f}*{\rm g})(x) (fg)(x)的自变量,也可以看作是在积分过程中的常量。为什么要做这样的约束呢?因为实际问题常常会有这样的数学关系,因此卷积应用而生。

当然,我这里知识抛砖引玉,关于卷积的精彩解释,可以知乎里面名称为palet的精彩解释点此链接,进入该网页,请往下翻,找用户名为“palet”的解释,如下图所示。


二维卷积:
g ( x , y ) = f ( x , y ) ∗ h ( x , y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( ξ , η ) h ( x − ξ , y − η ) d ξ d η g(x,y)=f(x,y)*h(x,y)=\int^{+\infty}_{-\infty}\int^{+\infty}_{-\infty}f(\xi,\eta)h(x-\xi,y-\eta)d\xi d\eta g(x,y)=

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值