图论

无向图

一个无向图G是一个二元组<V, E>,即G = <V, E>。

V:一个非空的集合,称为G的顶点集,V中元素成为顶点或节点;
E:无序积V&V的一个多重子集,称E为G的边集,E中元素成为无向边或边;用无序对表示边。
多重子集:存在元素相同的现象。

在这里插入图片描述

有向图

一个有向图D是一个二元组<V, E>,即D = <V, E>。

V:一个非空的集合,称为D的顶点集,V中元素成为顶点或节点;
E:卡氏积的一个多重子集,E中元素成为有向或边;可用有序对表示边。

在这里插入图片描述

名字规定

有限图:V,E均为有穷集合。
n阶图:|V| = n
零图:E = Φ
平凡图:E = Φ,且|V| = 1

边点关联

设ek=(vi,vj)为无向图G = <V, E>的一条边。称vi,vj为ek的端点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值