无向图
一个无向图G是一个二元组<V, E>,即G = <V, E>。
V:一个非空的集合,称为G的顶点集,V中元素成为顶点或节点;
E:无序积V&V的一个多重子集,称E为G的边集,E中元素成为无向边或边;用无序对表示边。
多重子集:存在元素相同的现象。
有向图
一个有向图D是一个二元组<V, E>,即D = <V, E>。
V:一个非空的集合,称为D的顶点集,V中元素成为顶点或节点;
E:卡氏积的一个多重子集,E中元素成为有向或边;可用有序对表示边。
名字规定
有限图:V,E均为有穷集合。
n阶图:|V| = n
零图:E = Φ
平凡图:E = Φ,且|V| = 1
边点关联
设ek=(vi,vj)为无向图G = <V, E>的一条边。称vi,vj为ek的端点