1. 无源场
性 质 1 : A 沿 场 域 V 中 任 意 闭 合 曲 面 通 量 等 于 0 。 性质1:A沿场域V中任意闭合曲面通量等于0。 性质1:A沿场域V中任意闭合曲面通量等于0。
性 质 2 : 穿 过 场 域 V 中 任 一 个 矢 量 管 的 所 有 截 面 的 通 量 都 相 等 。 性质2:穿过场域V中任一个矢量管的所有截面的通量都相等。 性质2:穿过场域V中任一个矢量管的所有截面的通量都相等。
性 质 3 : 无 源 场 存 在 着 矢 势 性质3:无源场存在着矢势 性质3:无源场存在着矢势
2. 无旋场
性 质 1 : A 沿 场 域 V 中 任 意 闭 合 路 径 L 环 量 等 于 0 。 性质1:A沿场域V中任意闭合路径L环量等于0。 性质1:A沿场域V中任意闭合路径L环量等于0。
性 质 2 : 无 旋 场 A 可 以 表 示 为 某 一 标 量 函 数 φ ( P ) 的 梯 度 场 。 性质2:无旋场A可以表示为某一标量函数φ(P)的梯度场。 性质2:无旋场A可以表示为某一标量函数φ(P)的梯度场。
3. 调和场
性 质 : 散 度 和 旋 度 都 等 于 0 性质:散度和旋度都等于0 性质:散度和旋度都等于0
4. 亥姆霍兹定理
在 空 间 有 限 区 域 V 内 的 某 一 矢 量 场 A , 由 它 的 散 度 、 旋 度 、 和 边 界 条 件 唯 一 确 定 。 在空间有限区域V内的某一矢量场A,由它的散度、旋度、和边界条件唯一确定。 在空间有限区域V内的某一矢量场A,由它的散度、旋度、和边界条件唯一确定。